George Bradley Richerson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/333069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amygdala lesions reduce seizure-induced respiratory arrest in DBA/1 mice. Epilepsy and Behavior, 2021, 121, 106440.	0.9	23
2	Seizure Clusters, Seizure Severity Markers, and SUDEP Risk. Frontiers in Neurology, 2021, 12, 643916.	1.1	12
3	Postictal Death Is Associated with Tonic Phase Apnea in a Mouse Model of Sudden Unexpected Death in Epilepsy. Annals of Neurology, 2021, 89, 1023-1035.	2.8	25
4	Limbic system involvement in modulation of breathing during seizures and arousal. FASEB Journal, 2021, 35, .	0.2	1
5	Automated Analysis of Risk Factors for Postictal Generalized EEG Suppression. Frontiers in Neurology, 2021, 12, 669517.	1.1	5
6	Forebrain Response to Breathing in Humans during Awake and Unconscious States. FASEB Journal, 2021, 35, .	0.2	0
7	Hypercapnic ventilatory response in epilepsy patients treated with VNS: A case ontrol study. Epilepsia, 2021, 62, e140-e146.	2.6	6
8	A ketogenic diet protects DBA/1 and Scn1a mice against seizure-induced respiratory arrest independent of ketosis. Epilepsy and Behavior, 2021, 124, 108334.	0.9	5
9	Benefit of buspirone on chemoreflex and central apnoeas in heart failure: a randomized controlled crossover trial. European Journal of Heart Failure, 2021, 23, 312-320.	2.9	28
10	Association of Peri-ictal Brainstem Posturing With Seizure Severity and Breathing Compromise in Patients With Generalized Convulsive Seizures. Neurology, 2021, 96, e352-e365.	1.5	16
11	832: Alleviation of Opioid-Induced Respiratory Depression by 5-HT7 Agonism. Critical Care Medicine, 2021, 49, 413-413.	0.4	1
12	Perinatal Nicotine Reduces Chemosensitivity of Medullary 5-HT Neurons after Maturation in Culture. Neuroscience, 2020, 446, 80-93.	1.1	7
13	5-HT neurons and central CO2 chemoreception. Handbook of Behavioral Neuroscience, 2020, 31, 377-391.	0.7	2
14	A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight, 2020, 5, .	2.3	45
15	The association of serotonin reuptake inhibitors and benzodiazepines with ictal central apnea. Epilepsy and Behavior, 2019, 98, 73-79.	0.9	23
16	Postictal serotonin levels are associated with peri-ictal apnea. Neurology, 2019, 93, e1485-e1494.	1.5	28
17	The BBSome in POMC and AgRP Neurons Is Necessary for Body Weight Regulation and Sorting of Metabolic Receptors. Diabetes, 2019, 68, 1591-1603.	0.3	32
18	Time of Day and a Ketogenic Diet Influence Susceptibility to SUDEP in Scn1aR1407X/+ Mice. Frontiers in Neurology, 2019, 10, 278.	1.1	34

#	Article	IF	CITATIONS
19	Incidence, Recurrence, and Risk Factors for Peri-ictal Central Apnea and Sudden Unexpected Death in Epilepsy. Frontiers in Neurology, 2019, 10, 166.	1.1	63
20	Chemosensitivity of <i>Phox2b</i> â€expressing retrotrapezoid neurons is mediated in part by input from 5â€HT neurons. Journal of Physiology, 2019, 597, 2741-2766.	1.3	38
21	Ventilatory response to CO ₂ in patients with epilepsy. Epilepsia, 2019, 60, 508-517.	2.6	31
22	Postconvulsive central apnea as a biomarker for sudden unexpected death in epilepsy (SUDEP). Neurology, 2019, 92, e171-e182.	1.5	130
23	The incidence and significance of periictal apnea in epileptic seizures. Epilepsia, 2018, 59, 573-582.	2.6	113
24	Effect of Thoracic Epidural Anesthesia in a Rat Model of Phrenic Motor Inhibition after Upper Abdominal Surgery. Anesthesiology, 2018, 129, 791-807.	1.3	4
25	Summary of the PAME 2018 Meeting. Epilepsy Currents, 2018, 18, 398-399.	0.4	1
26	Serum serotonin levels in patients with epileptic seizures. Epilepsia, 2018, 59, e91-e97.	2.6	50
27	Tolerability of a comprehensive cardiorespiratory monitoring protocol in an epilepsy monitoring unit. Epilepsy and Behavior, 2018, 85, 173-176.	0.9	8
28	Severe peri-ictal respiratory dysfunction is common in Dravet syndrome. Journal of Clinical Investigation, 2018, 128, 1141-1153.	3.9	103
29	Modulation of Tonic GABA Currents by Anion Channel and Connexin Hemichannel Antagonists. Neurochemical Research, 2017, 42, 2551-2559.	1.6	25
30	Isoflurane, ketamine-xylazine, and urethane markedly alter breathing even at subtherapeutic doses. Journal of Neurophysiology, 2017, 118, 2389-2401.	0.9	32
31	Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development. Neuroscience, 2017, 344, 1-14.	1.1	26
32	Unexpected Death of a Child with Complex Febrile Seizures—Pathophysiology Similar to Sudden Unexpected Death in Epilepsy?. Frontiers in Neurology, 2017, 8, 21.	1.1	12
33	From unwitnessed fatality to witnessed rescue: Pharmacologic intervention in sudden unexpected death in epilepsy. Epilepsia, 2016, 57, 35-45.	2.6	43
34	Omega-3 fatty acids and SUDEP prevention – Authors' reply. Lancet Neurology, The, 2016, 15, 1303-1304.	4.9	1
35	Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurology, The, 2016, 15, 1075-1088.	4.9	472
36	A dietary supplement for SUDEP prevention?. Nature Reviews Neurology, 2016, 12, 495-496.	4.9	4

#	Article	IF	CITATIONS
37	Sudden unexpected death in epilepsy: basic mechanisms and clinical implications for prevention. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 402-413.	0.9	67
38	Impaired Serotonergic Brainstem Function during and after Seizures. Journal of Neuroscience, 2016, 36, 2711-2722.	1.7	96
39	Insomnia Caused by Serotonin Depletion is Due to Hypothermia. Sleep, 2015, 38, 1985-1993.	0.6	35
40	The Alteration of Neonatal Raphe Neurons by Prenatal–Perinatal Nicotine. Meaning for Sudden Infant Death Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 489-499.	1.4	39
41	Isoflurane abolishes spontaneous firing of serotonin neurons and masks their pH/CO ₂ chemosensitivity. Journal of Neurophysiology, 2015, 113, 2879-2888.	0.9	33
42	Functional link between the hypocretin and serotonin systems in the neural control of breathing and central chemosensitivity. Journal of Neurophysiology, 2015, 114, 381-389.	0.9	10
43	5-HT _{2A} receptor activation is necessary for CO ₂ -induced arousal. Journal of Neurophysiology, 2015, 114, 233-243.	0.9	55
44	Breathing Inhibited When Seizures Spread to the Amygdala and upon Amygdala Stimulation. Journal of Neuroscience, 2015, 35, 10281-10289.	1.7	180
45	Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate Glucose and Lipid Homeostasis. Cell Metabolism, 2015, 21, 692-705.	7.2	70
46	Sleep and Stroke. , 2015, , 255-269.		0
47	Functional and Developmental Identification of a Molecular Subtype of Brain Serotonergic Neuron Specialized to Regulate Breathing Dynamics. Cell Reports, 2014, 9, 2152-2165.	2.9	106
48	Localization and behaviors in null mice suggest that <scp>ASIC1</scp> and <scp>ASIC2</scp> modulate responses to aversive stimuli. Genes, Brain and Behavior, 2014, 13, 179-194.	1.1	83
49	Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nature Reviews Neurology, 2014, 10, 271-282.	4.9	287
50	Dual Effects of 5-HT _{1a} Receptor Activation on Breathing in Neonatal Mice. Journal of Neuroscience, 2014, 34, 51-59.	1.7	27
51	Serotonin neurones have antiâ€convulsant effects and reduce seizureâ€induced mortality. Journal of Physiology, 2014, 592, 4395-4410.	1.3	136
52	Diphtheria toxin treatment of Pet-1-Cre floxed diphtheria toxin receptor mice disrupts thermoregulation without affecting respiratory chemoreception. Neuroscience, 2014, 279, 65-76.	1.1	19
53	Serotonin Neurons and Central Respiratory Chemoreception. Progress in Brain Research, 2014, 209, 207-233.	0.9	72
54	Development of brainstem 5â€ <scp>HT</scp> _{1A} receptorâ€binding sites in serotoninâ€deficient mice. Journal of Neurochemistry, 2013, 126, 749-757.	2.1	8

#	Article	IF	CITATIONS
55	Serotonergic mechanisms are necessary for central respiratory chemoresponsiveness in situ. Respiratory Physiology and Neurobiology, 2013, 186, 214-220.	0.7	34
56	Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Molecular Psychiatry, 2013, 18, 1077-1089.	4.1	74
57	Sudden unexpected death in epilepsy: Fatal post-ictal respiratory and arousal mechanisms. Respiratory Physiology and Neurobiology, 2013, 189, 315-323.	0.7	69
58	Rapid regulation of tonic GABA currents in cultured rat hippocampal neurons. Journal of Neurophysiology, 2013, 109, 803-812.	0.9	18
59	Medullary serotonin neurons are CO ₂ sensitive in situ. Journal of Neurophysiology, 2013, 110, 2536-2544.	0.9	44
60	Serotonin: The Anti-SuddenDeathAmine?. Epilepsy Currents, 2013, 13, 241-244.	0.4	25
61	Isoflurane stimulates firing frequency and masks chemosensitivity of CO 2 â€inhibited GABAergic neurons in situ. FASEB Journal, 2013, 27, 1137.10.	0.2	0
62	Response to Comment on "Impaired Respiratory and Body Temperature Control Upon Acute Serotonergic Neuron Inhibition― Science, 2012, 337, 646-647.	6.0	13
63	GABAergic neurons in the medullary raphé possess network independent chemosensitivity in situ. FASEB Journal, 2012, 26, 894.13.	0.2	0
64	Continuous Positive Airway Pressure: Evaluation of a Novel Therapy for Patients with Acute Ischemic Stroke. Sleep, 2011, 34, 1271-1277.	0.6	143
65	The serotonin axis: Shared mechanisms in seizures, depression, and SUDEP. Epilepsia, 2011, 52, 28-38.	2.6	176
66	Altered ventilatory and thermoregulatory control in male and female adult Pet-1 null mice. Respiratory Physiology and Neurobiology, 2011, 177, 133-140.	0.7	39
67	Impaired Respiratory and Body Temperature Control Upon Acute Serotonergic Neuron Inhibition. Science, 2011, 333, 637-642.	6.0	305
68	The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO ₂ chemoreception, and thermoregulation. Journal of Applied Physiology, 2010, 108, 1425-1432.	1.2	117
69	Medullary serotonin neurons and their roles in central respiratory chemoreception. Respiratory Physiology and Neurobiology, 2010, 173, 256-263.	0.7	76
70	Respiratory plasticity in sleep apnoea: should it be harnessed or restrained?. Journal of Physiology, 2010, 588, 3-4.	1.3	2
71	Postdepolarization Potentiation of GABAA Receptors: A Novel Mechanism Regulating Tonic Conductance in Hippocampal Neurons. Journal of Neuroscience, 2010, 30, 7672-7684.	1.7	18
72	Central serotonin neurons are required for arousal to CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16354-16359.	3.3	221

#	Article	IF	CITATIONS
73	Auto-Titrating Continuous Positive Airway Pressure for Patients With Acute Transient Ischemic Attack. Stroke, 2010, 41, 1464-1470.	1.0	67
74	5-HT Neurons and Central CO2 Chemoreception. Handbook of Behavioral Neuroscience, 2010, , 293-305.	0.7	0
75	Modulation of Respiratory Activity by Hypocretin-1 (Orexin A) In Situ and In Vitro. Advances in Experimental Medicine and Biology, 2010, 669, 109-113.	0.8	17
76	Neonatal mice lacking serotonin neurons have high mortality that is worsened on exposure to hypoxia and hypercapnia FASEB Journal, 2010, 24, 613.10.	0.2	0
77	Modulation of neuroventilation and central chemosensitivity: serotonergic and hypocretinergic effects. FASEB Journal, 2010, 24, 1026.5.	0.2	Ο
78	Transgenic Mice Lacking Serotonin Neurons Have Severe Apnea and High Mortality during Development. Journal of Neuroscience, 2009, 29, 10341-10349.	1.7	142
79	Raphé Neurons Stimulate Respiratory Circuit Activity by Multiple Mechanisms via Endogenously Released Serotonin and Substance P. Journal of Neuroscience, 2009, 29, 3720-3737.	1.7	231
80	Role of chemoreceptors in mediating dyspnea. Respiratory Physiology and Neurobiology, 2009, 167, 9-19.	0.7	63
81	Medullary serotonin neurons and central CO2 chemoreception. Respiratory Physiology and Neurobiology, 2009, 168, 49-58.	0.7	126
82	The Brainstem and Serotonin in the Sudden Infant Death Syndrome. Annual Review of Pathology: Mechanisms of Disease, 2009, 4, 517-550.	9.6	250
83	Contributions of 5-HT neurons to respiratory control: Neuromodulatory and trophic effects. Respiratory Physiology and Neurobiology, 2008, 164, 222-232.	0.7	115
84	Interaction between defects in ventilatory and thermoregulatory control in mice lacking 5-HT neurons. Respiratory Physiology and Neurobiology, 2008, 164, 350-357.	0.7	43
85	Defects in Breathing and Thermoregulation in Mice with Near-Complete Absence of Central Serotonin Neurons. Journal of Neuroscience, 2008, 28, 2495-2505.	1.7	283
86	GFP-expressing locus ceruleus neurons from Prp57 transgenic mice exhibit CO ₂ /H ⁺ responses in primary cell culture. Journal of Applied Physiology, 2008, 105, 1301-1311.	1.2	39
87	Contribution of chemosensitive serotonergic neurons to interactions between the sleep-wake cycle and respiratory control. , 2008, , 529-554.		5
88	Serotonin (5â€HT) facilitates ventilation via distinct 5HT2 and 5HT4 receptorâ€mediated mechanisms in situ, in the arterially perfused rat brainstem preparation. FASEB Journal, 2008, 22, 1172.9.	0.2	0
89	Carotid body dysfunction and altered oxygen homeostasis in models of Parkinson's disease. FASEB Journal, 2008, 22, 1231.5.	0.2	0
90	Prp57 Transgenic Mice Express Multiple pH Sensitive Ion Channels in CO2/H+ Sensitive GFP+ Locus Coeruleus Neurons. FASEB Journal, 2008, 22, 174-174.	0.2	0

#	Article	IF	CITATIONS
91	Changes in glucose do not alter baseline firing rate or chemosensitivity of serotonin neurons cultured from the medullary raphé. Respiratory Physiology and Neurobiology, 2007, 157, 235-241.	0.7	1
92	Nonvesicular Inhibitory Neurotransmission via Reversal of the GABA Transporter GAT-1. Neuron, 2007, 56, 851-865.	3.8	222
93	Mechanism of Increased Open Probability by a Mutation of the BK Channel. Journal of Neurophysiology, 2006, 96, 1507-1516.	0.9	46
94	The Transmembrane Sodium Gradient Influences Ambient GABA Concentration by Altering the Equilibrium of GABA Transporters. Journal of Neurophysiology, 2006, 96, 2425-2436.	0.9	44
95	Adult Mice with 5â€HT Neuronâ€specific Knockout of Lmx1b Exhibit an Attenuated Hypercapnic Ventilatory Response. FASEB Journal, 2006, 20, A785.	0.2	4
96	Relationship between dendrites of serotonin neurons and large midline vessels of the medulla FASEB Journal, 2006, 20, A785.	0.2	0
97	Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nature Genetics, 2005, 37, 733-738.	9.4	513
98	Looking for GABA in all the Wrong Places: The Relevance of Extrasynaptic GABAA Receptors to Epilepsy. Epilepsy Currents, 2004, 4, 239-242.	0.4	45
99	Learning to take a deep breath—with BDNF. Nature Medicine, 2004, 10, 25-26.	15.2	11
100	Serotonergic neurons as carbon dioxide sensors that maintain ph homeostasis. Nature Reviews Neuroscience, 2004, 5, 449-461.	4.9	435
101	Medullary serotonergic neurones and adjacent neurones that express neurokinin-1 receptors are both involved in chemoreceptionin vivo. Journal of Physiology, 2004, 556, 235-253.	1.3	130
102	Effect of extracellular acid-base disturbances on the intracellular pH of neurones cultured from rat medullary raphe or hippocampus. Journal of Physiology, 2004, 559, 85-101.	1.3	43
103	Role of the GABA Transporter in Epilepsy. Advances in Experimental Medicine and Biology, 2004, 548, 76-91.	0.8	83
104	Midbrain serotonergic neurons are central pH chemoreceptors. Nature Neuroscience, 2003, 6, 1139-1140.	7.1	177
105	Dynamic Equilibrium of Neurotransmitter Transporters: Not Just for Reuptake Anymore. Journal of Neurophysiology, 2003, 90, 1363-1374.	0.9	276
106	Vigabatrin Induces Tonic Inhibition Via GABA Transporter Reversal Without Increasing Vesicular GABA Release. Journal of Neurophysiology, 2003, 89, 2021-2034.	0.9	138
107	Quantification of the response of rat medullary raphe neurones to independent changes in pH o and P CO2. Journal of Physiology, 2002, 540, 951-970.	1.3	108
108	Chemosensitive serotonergic neurons are closely associated with large medullary arteries. Nature Neuroscience, 2002, 5, 401-402.	7.1	146

#	Article	IF	CITATIONS
109	Quantification of the response of rat medullary raphe neurones to independent changes in pHo and PCO2. , 2002, 540, 951.		2
110	Acidosis-Stimulated Neurons of the Medullary Raphe Are Serotonergic. Journal of Neurophysiology, 2001, 85, 2224-2235.	0.9	231
111	GABA Transaminase Inhibition Induces Spontaneous and Enhances Depolarization-Evoked GABA Efflux via Reversal of the GABA Transporter. Journal of Neuroscience, 2001, 21, 2630-2639.	1.7	139
112	Chemosensitivity of serotonergic neurons in the rostral ventral medulla. Respiration Physiology, 2001, 129, 175-189.	2.8	146
113	Chemosensitivity of non-respiratory rat CNS neurons in tissue culture. Brain Research, 2000, 860, 119-129.	1.1	32
114	Development of chemosensitivity of rat medullary raphe neurons. Neuroscience, 1999, 90, 1001-1011.	1.1	113
115	Chemosensitivity of rat medullary raphe neurones in primary tissue culture. Journal of Physiology, 1998, 511, 433-450.	1.3	169
116	Carrier-Mediated GABA Release Activates GABA Receptors on Hippocampal Neurons. Journal of Neurophysiology, 1998, 80, 270-281.	0.9	87
117	Sudden Infant Death Syndrome: The Role of Central Chemosensitivity. Neuroscientist, 1997, 3, 3-7.	2.6	17
118	Gabapentin potentiates the conductance increase induced by nipecotic acid in CA1 pyramidal neurons in vitro. Epilepsy Research, 1995, 20, 193-202.	0.8	85
119	Enhancement of GABAA receptor-mediated conductances induced by nerve injury in a subclass of sensory neurons. Journal of Neurophysiology, 1995, 74, 673-683.	0.9	34
120	Response to CO2 of neurons in the rostral ventral medulla in vitro. Journal of Neurophysiology, 1995, 73, 933-944.	0.9	178
121	Medullary respiratory neurons in the guinea pig: localization and firing patterns. Brain Research, 1992, 591, 79-87.	1.1	15
122	Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5359-5362.	3.3	388
123	Preservation of integrative function in a perfused guinea pig brain. Brain Research, 1990, 517, 7-18.	1.1	32
124	Maintenance of complex neural function during perfusion of the mammalian brain. Brain Research, 1987, 409, 128-132.	1.1	21
125	Thyrotropin-releasing hormone induces rhythmic bursting in neurons of the nucleus tractus solitarius. Science, 1985, 229, 67-69.	6.0	159

126 Sleep apnea, stroke risk factors, and the arousal response. , 0, , 64-79.