Miguel Diaz-Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3330485/publications.pdf

Version: 2024-02-01

74 papers 4,332 citations

38 h-index 106344 65 g-index

77 all docs

77 docs citations

77 times ranked

4856 citing authors

#	Article	IF	CITATIONS
1	P2X7 receptor blockade reduces tau induced toxicity, therapeutic implications in tauopathies. Progress in Neurobiology, 2022, 208, 102173.	5.7	22
2	TNAP upregulation is a critical factor in Tauopathies and its blockade ameliorates neurotoxicity and increases life-expectancy. Neurobiology of Disease, 2022, 165, 105632.	4.4	2
3	Editorial: P2X7 as Common Therapeutic Target in Brain Diseases. Frontiers in Molecular Neuroscience, 2021, 14, 656011.	2.9	5
4	The Role of P2X7 Receptor in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 94.	2.9	44
5	ATP Measurement in Cerebrospinal Fluid Using a Microplate Reader. Methods in Molecular Biology, 2020, 2041, 233-241.	0.9	1
6	Peripheral nervous system effects in the PS19 tau transgenic mouse model of tauopathy. Neuroscience Letters, 2019, 698, 204-208.	2.1	9
7	Amyloid Peptide Induced Neuroinflammation Increases the P2X7 Receptor Expression in Microglial Cells, Impacting on Its Functionality. Frontiers in Cellular Neuroscience, 2019, 13, 143.	3.7	51
8	Nucleotides regulate the common molecular mechanisms that underlie neurodegenerative diseases; Therapeutic implications. Brain Research Bulletin, 2019, 151, 84-91.	3.0	10
9	The regulation of proteostasis in glial cells by nucleotide receptors is key in acute neuroinflammation. FASEB Journal, 2018, 32, 3020-3032.	0.5	9
10	MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Frontiers in Molecular Neuroscience, 2018, 11, 442.	2.9	26
11	The Neurotoxic Role of Extracellular Tau Protein. International Journal of Molecular Sciences, 2018, 19, 998.	4.1	46
12	Haploinsufficient TNAP Mice Display Decreased Extracellular ATP Levels and Expression of Pannexin-1 Channels. Frontiers in Pharmacology, 2018, 9, 170.	3.5	14
13	Neuronal P2X7 Receptor: Involvement in Neuronal Physiology and Pathology. Journal of Neuroscience, 2017, 37, 7063-7072.	3.6	111
14	Regulation of proteasome activity by P2Y 2 receptor underlies the neuroprotective effects of extracellular nucleotides. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 43-51.	3.8	5
15	Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation. Human Molecular Genetics, 2016, 25, 4143-4156.	2.9	54
16	Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. Journal of Neuroscience, 2016, 36, 5920-5932.	3.6	127
17	Presynaptic P2X1-3 and $\hat{l}\pm 3$ -containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology, 2016, 105, 241-257.	4.1	14
18	microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Scientific Reports, 2015, 5, 17486.	3.3	98

#	Article	IF	Citations
19	Age-Related Nuclear Translocation of P2X6 Subunit Modifies Splicing Activity Interacting with Splicing Factor 3A1. PLoS ONE, 2015, 10, e0123121.	2.5	10
20	Tissue-nonspecific Alkaline Phosphatase Regulates Purinergic Transmission in the Central Nervous System During Development and Disease. Computational and Structural Biotechnology Journal, 2015, 13, 95-100.	4.1	58
21	Role of P2X7 and P2Y2 receptors on α-secretase-dependent APP processing: Control of amyloid plaques formation "in vivo―by P2X7 receptor. Computational and Structural Biotechnology Journal, 2015, 13, 176-181.	4.1	27
22	TNAP Plays a Key Role in Neural Differentiation as well as in Neurodegenerative Disorders. Sub-Cellular Biochemistry, 2015, 76, 375-385.	2.4	10
23	Diadenosine tetraphosphate contributes to carbachol-induced tear secretion. Purinergic Signalling, 2015, 11, 87-93.	2.2	3
24	P2X7 Receptor Inhibition Interrupts the Progression of Seizures in Immature Rats and Reduces Hippocampal Damage. CNS Neuroscience and Therapeutics, 2014, 20, 556-564.	3.9	58
25	Tau Triggers Tear Secretion by Interacting with Muscarinic Acetylcholine Receptors in New Zealand White Rabbits. Journal of Alzheimer's Disease, 2014, 40, S71-S77.	2.6	2
26	Sources of Extracellular Tau and its Signaling. Journal of Alzheimer's Disease, 2014, 40, S7-S15.	2.6	27
27	Increased neocortical expression of the <scp>P</scp> 2X7 receptor after status epilepticus and anticonvulsant effect of <scp>P</scp> 2X7 receptor antagonist <scp>A</scp> â€438079. Epilepsia, 2013, 54, 1551-1561.	5.1	130
28	P2X receptors as targets for the treatment of status epilepticus. Frontiers in Cellular Neuroscience, 2013, 7, 237.	3.7	45
29	Looking for novel functions of tau. Biochemical Society Transactions, 2012, 40, 653-655.	3.4	16
30	Tau Overexpression Results in Its Secretion via Membrane Vesicles. Neurodegenerative Diseases, 2012, 10, 73-75.	1.4	74
31	The Specificity Protein Factor Sp1 Mediates Transcriptional Regulation of P2X7 Receptors in the Nervous System. Journal of Biological Chemistry, 2012, 287, 44628-44644.	3.4	52
32	$\hat{l}\pm$ -Synuclein accumulates in huntingtin inclusions but forms independent filaments and its deficiency attenuates early phenotype in a mouse model of Huntington's disease. Human Molecular Genetics, 2012, 21, 495-510.	2.9	34
33	Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB Journal, 2012, 26, 1616-1628.	0.5	173
34	In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer's disease through GSK3 \hat{l}^2 and secretases. Neurobiology of Aging, 2012, 33, 1816-1828.	3.1	163
35	Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation. Journal of Cell Science, 2012, 125, 176-188.	2.0	71
36	P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 174-87.	0.8	36

#	Article	IF	CITATIONS
37	Opposite effects of P2X7 and P2Y ₂ nucleotide receptors on α-secretase-dependent APP processing in Neuro-2a cells. FEBS Letters, 2011, 585, 2255-2262.	2.8	55
38	Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain, 2011, 134, 119-136.	7.6	178
39	PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington's disease striatum. Cell Death and Differentiation, 2010, 17, 324-335.	11.2	49
40	Tissue-nonspecific Alkaline Phosphatase Promotes the Neurotoxicity Effect of Extracellular Tau. Journal of Biological Chemistry, 2010, 285, 32539-32548.	3.4	138
41	Acute Polyglutamine Expression in Inducible Mouse Model Unravels Ubiquitin/Proteasome System Impairment and Permanent Recovery Attributable to Aggregate Formation. Journal of Neuroscience, 2010, 30, 3675-3688.	3.6	82
42	Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13986-13991.	7.1	82
43	Altered P2X7â€receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration. FASEB Journal, 2009, 23, 1893-1906.	0.5	206
44	Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington's disease: Role in excitotoxicity. Neurobiology of Disease, 2009, 36, 461-469.	4.4	36
45	Ca ²⁺ /calmodulinâ€dependent kinaseâ€∫II signalling cascade mediates P2X7 receptorâ€dependent inhibition of neuritogenesis in neuroblastoma cells. FEBS Journal, 2009, 276, 5307-5325.	4.7	62
46	Characteristics and consequences of muscarinic receptor activation by tau protein. European Neuropsychopharmacology, 2009, 19, 708-717.	0.7	85
47	Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Molecular and Cellular Neurosciences, 2008, 37, 673-681.	2.2	205
48	Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. Journal of Cell Science, 2008, 121, 3717-3728.	2.0	110
49	Testing the possible inhibition of proteasome by direct interaction with ubiquitylated and aggregated huntingtin. Brain Research Bulletin, 2007, 72, 121-123.	3.0	6
50	BH3-only proteins Bid and BimEL are differentially involved in neuronal dysfunction in mouse models of Huntington's disease. Journal of Neuroscience Research, 2007, 85, 2756-2769.	2.9	30
51	Is the ubiquitin-proteasome system impaired in Huntington's disease?. Cellular and Molecular Life Sciences, 2007, 64, 2245-2257.	5.4	67
52	Extracellular tau is toxic to neuronal cells. FEBS Letters, 2006, 580, 4842-4850.	2.8	208
53	Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain. European Journal of Neuroscience, 2006, 23, 649-658.	2.6	121
54	Inhibition of 26S proteasome activity by huntingtin filaments but not inclusion bodies isolated from mouse and human brain. Journal of Neurochemistry, 2006, 98, 1585-1596.	3.9	89

#	Article	IF	CITATIONS
55	Role of CaCMKII in the Cross Talk Between Ionotropic Nucleotide and Nicotinic Receptors in Individual Cholinergic Terminals. Journal of Molecular Neuroscience, 2006, 30, 177-180.	2.3	6
56	The Ubiquitin-Proteasome System in Huntington's Disease. Neuroscientist, 2005, 11, 583-594.	3.5	50
57	Full Motor Recovery Despite Striatal Neuron Loss and Formation of Irreversible Amyloid-Like Inclusions in a Conditional Mouse Model of Huntington's Disease. Journal of Neuroscience, 2005, 25, 9773-9781.	3.6	73
58	Biochemical, Ultrastructural, and Reversibility Studies on Huntingtin Filaments Isolated from Mouse and Human Brain. Journal of Neuroscience, 2004, 24, 9361-9371.	3.6	52
59	Interaction between Dinucleotide and Nicotinic Receptors in Individual Cholinergic Terminals. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 954-967.	2.5	16
60	Enhaced induction of the immunoproteasome by interferon gamma in neurons expressing mutant huntingtin. Neurotoxicity Research, 2004, 6, 463-468.	2.7	41
61	Testing the ubiquitin–proteasome hypothesis of neurodegeneration in vivo. Trends in Neurosciences, 2004, 27, 66-69.	8.6	36
62	P2X7 receptors in rat brain: presence in synaptic terminals and granule cells. Neurochemical Research, 2003, 28, 1597-1605.	3.3	94
63	Presence of functional ATP and dinucleotide receptors in glutamatergic synaptic terminals from rat midbrain. Journal of Neurochemistry, 2003, 87, 160-171.	3.9	29
64	Neuronal Induction of the Immunoproteasome in Huntington's Disease. Journal of Neuroscience, 2003, 23, 11653-11661.	3.6	228
65	Modulation of the Rat Hippocampal Dinucleotide Receptor by Adenosine Receptor Activation. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 441-450.	2.5	32
66	Cloning and characterization of two novel zebrafish P2X receptor subunits. Biochemical and Biophysical Research Communications, 2002, 295, 849-853.	2.1	35
67	Co-localisation of functional nicotinic and ionotropic nucleotide receptors in isolated cholinergic synaptic terminals. Neuropharmacology, 2002, 42, 20-33.	4.1	40
68	Presence of different ATP receptors on rat midbrain single synaptic terminals. Involvement of the P2X3 subunits. Neuroscience Letters, 2001, 301, 159-162.	2.1	26
69	Independent receptors for diadenosine pentaphosphate and ATP in rat midbrain single synaptic terminals. European Journal of Neuroscience, 2001, 14, 918-926.	2.6	25
70	Adenosine triphosphate and diadenosine pentaphosphate induce [Ca2+]iincrease in rat basal ganglia aminergic terminals. Journal of Neuroscience Research, 2001, 64, 174-182.	2.9	22
71	Presynaptic diadenosine polyphosphate receptors: Interaction with other neurotransmitter systems. Drug Development Research, 2001, 52, 239-248.	2.9	2
72	Modulation of the dinucleotide receptor present in rat midbrain synaptosomes by adenosine and ATP. British Journal of Pharmacology, 2000, 130, 434-440.	5.4	29

ı	#	Article	IF	CITATIONS
	73	Presynaptic signalling mediated by mono- and dinucleotides in the central nervous system. Journal of the Autonomic Nervous System, 2000, 81, 195-199.	1.9	9
	74	Chapter 32 Diadenosine polyphosphates, extracellular function and catabolism. Progress in Brain Research, 1999, 120, 397-409.	1.4	41