Pilar Amo-Ochoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3330293/publications.pdf

Version: 2024-02-01

87 papers 2,633 citations

26 h-index

218592

49 g-index

92 all docs 92 docs citations

92 times ranked 3501 citing authors

#	Article	IF	CITATIONS
1	Multi-stimulus semiconductor Cu(<scp>i</scp>)–I-pyrimidine coordination polymer with thermo- and mechanochromic sensing. CrystEngComm, 2022, 24, 341-349.	1.3	6
2	Innovative Microstructural Transformation upon CO2 Supercritical Conditions on Metal-Nucleobase Aerogel and Its Use as Effective Filler for HPLC Biomolecules Separation. Nanomaterials, 2022, 12, 675.	1.9	0
3	Heterobimetallic three-dimensional 4d-4f coordination polymers based on 5-methyl-1-(pyridyn-4-ylmethyl)-1H-1,2,3-triazole-3,4-dicarboxylate. Journal of Solid State Chemistry, 2022, 310, 123027.	1.4	4
4	A Nanostructured Cu(II) Coordination Polymer Based on Alanine as a Trifunctional Mimic Enzyme and Efficient Composite in the Detection of Sphingobacteria. Bioinorganic Chemistry and Applications, 2022, 2022, 1-10.	1.8	1
5	New Promises and Opportunities in 3D Printable Inks Based on Coordination Compounds for the Creation of Objects with Multiple Applications. Chemistry - A European Journal, 2021, 27, 2887-2907.	1.7	9
6	The role of coordination compounds in virus research. Different approaches and trends. Dalton Transactions, 2021, 50, 2310-2323.	1.6	16
7	Frontispiece: New Promises and Opportunities in 3D Printable Inks Based on Coordination Compounds for the Creation of Objects with Multiple Applications. Chemistry - A European Journal, 2021, 27, .	1.7	O
8	Fluorescent Carbon Nitride Macrostructures Derived from Triazineâ€Based Cocrystals. Advanced Optical Materials, 2021, 9, 2100683.	3.6	8
9	Advances and Novel Perspectives on Colloids, Hydrogels, and Aerogels Based on Coordination Bonds with Biological Interest Ligands. Nanomaterials, 2021, 11, 1865.	1.9	10
10	Rational Design of Copper(II)–Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36948-36957.	4.0	5
11	Synergistic Doping and Surface Decoration of Carbon Nitride Macrostructures by Single Crystal Design. ACS Applied Energy Materials, 2021, 4, 1868-1875.	2.5	12
12	Cu(I)–I-2,4-diaminopyrimidine Coordination Polymers with Optoelectronic Properties as a Proof of Concept for Solar Cells. Inorganic Chemistry, 2021, 60, 1208-1219.	1.9	11
13	Cunning defects: emission control by structural point defects on Cu(<scp>i</scp>)I double chain coordination polymers. Journal of Materials Chemistry C, 2020, 8, 1448-1458.	2.7	11
14	Multifunctional coordination polymers based on copper(<scp>i</scp>) and mercaptonicotinic ligands: synthesis, and structural, optical and electrical characterization. Dalton Transactions, 2020, 49, 10545-10553.	1.6	12
15	Gas Sensors Based on Copperâ€Containing Metalâ€Organic Frameworks, Coordination Polymers, and Complexes. ChemPlusChem, 2020, 85, 1564-1579.	1.3	14
16	Crystallization Induced Enhanced Emission in Two New Zn(II) and Cd(II) Supramolecular Coordination Complexes with the 1-(3,4-Dimethylphenyl)-5-Methyl-1H-1,2,3-Triazole-4-Carboxylate Ligand. Polymers, 2020, 12, 1756.	2.0	7
17	The role of defects in the properties of functional coordination polymers. Advances in Inorganic Chemistry, 2020, 76, 73-119.	0.4	6
18	Cu(<scp>i</scp>)–I coordination polymers as the possible substitutes of lanthanides as downshifters for increasing the conversion efficiency of solar cells. Dalton Transactions, 2020, 49, 4315-4322.	1.6	9

#	Article	IF	Citations
19	A bioinspired metal–organic approach to cross-linked functional 3D nanofibrous hydro- and aero-gels with effective mixture separation of nucleobases by molecular recognition. Nanoscale, 2020, 12, 14699-14707.	2.8	5
20	Experimental and Theoretical Study of Dynamic Structural Transformations between Sensing Copper(II)-Uracil Antiferromagnetic and Metamagnetic Coordination Compounds. Crystal Growth and Design, 2020, 20, 5097-5107.	1.4	0
21	Synthesis of metal-free lightweight materials with sequence-encoded properties. Journal of Materials Chemistry A, 2020, 8, 8752-8760.	5.2	7
22	Multifunctional coordination polymers based on copper with modified nucleobases, easily modulated in size and conductivity. Journal of Inorganic Biochemistry, 2019, 200, 110805.	1.5	8
23	Copper dithiolene [Cu(SC6H2Cl2S)2]â^ units connected to alkaline/copper complexes: from ionic assemblies to discrete molecular entities and coordination polymers. CrystEngComm, 2019, 21, 957-963.	1.3	3
24	Micro and Nano Smart Composite Films Based on Copper-Iodine Coordination Polymer as Thermochromic Biocompatible Sensors. Polymers, 2019, 11, 1047.	2.0	8
25	Reversible transformation between Cu(<scp>i</scp>)-thiophenolate coordination polymers displaying luminescence and electrical properties. CrystEngComm, 2019, 21, 3232-3239.	1.3	10
26	Multifunctional Copper(I) Coordination Polymers with Aromatic Mono- and Ditopic Thioamides. Inorganic Chemistry, 2019, 58, 3290-3301.	1.9	42
27	3D Printing of a Thermo―and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities. Advanced Functional Materials, 2019, 29, 1808424.	7.8	35
28	Perspectives of the smart Cu-lodine coordination polymers: A portage to the world of new nanomaterials and composites. Coordination Chemistry Reviews, 2019, 381, 65-78.	9.5	75
29	Phase transitions of copper(I) iodide compounds under high pressure. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e306-e306.	0.0	0
30	Fast and efficient direct formation of size-controlled nanostructures of coordination polymers based on copper(<scp>i</scp>)–iodine bearing functional pyridine terminal ligands. Dalton Transactions, 2018, 47, 5607-5613.	1.6	8
31	Unprecedented Centimeterâ€Long Carbon Nitride Needles: Synthesis, Characterization and Applications. Small, 2018, 14, e1800633.	5.2	64
32	High Electrical Conductivity of Single Metal–Organic Chains. Advanced Materials, 2018, 30, e1705645.	11.1	13
33	One-Pot Preparation of Mechanically Robust, Transparent, Highly Conductive, and Memristive Metal–Organic Ultrathin Film. ACS Nano, 2018, 12, 10171-10177.	7.3	15
34	Smart composite films of nanometric thickness based on copper–iodine coordination polymers. Toward sensors. Chemical Science, 2018, 9, 8000-8010.	3.7	44
35	Supramolecular Interactions Modulating Electrical Conductivity and Nanoprocessing of Copper–lodine Double-Chain Coordination Polymers. Inorganic Chemistry, 2018, 57, 7568-7577.	1.9	22
36	Structure and electrical properties of a one-dimensional polymeric silver thiosaccharinate complex with argentophilic interactions. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 186-193.	0.2	2

#	Article	IF	Citations
37	Chemically Resistant, Shapeable, and Conducting Metalâ€Organic Gels and Aerogels Built from Dithiooxamidato Ligand. Advanced Functional Materials, 2017, 27, 1605448.	7.8	40
38	Stimuliâ€Responsive Materials: Chemically Resistant, Shapeable, and Conducting Metalâ€Organic Gels and Aerogels Built from Dithiooxamidato Ligand (Adv. Funct. Mater. 15/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
39	Copper(II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. Angewandte Chemie - International Edition, 2017, 56, 987-991.	7.2	24
40	Copper(II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. Angewandte Chemie, 2017, 129, 1007-1011.	1.6	1
41	Multistimuli Response Micro―and Nanolayers of a Coordination Polymer Based on Cu ₂ 1 ₂ Chains Linked by 2â€Aminopyrazine. Small, 2017, 13, 1700965.	5.2	43
42	Direct Formation of Sub-Micron and Nanoparticles of a Bioinspired Coordination Polymer Based on Copper with Adenine. Polymers, 2017, 9, 565.	2.0	9
43	Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II) Coordination Polymer and NiAl-Layered Double Hydroxides. Polymers, 2016, 8, 5.	2.0	13
44	Supramolecular interactions in Cobalt(II)–nucleobases complexes: A methyl matter. Inorganica Chimica Acta, 2016, 452, 251-257.	1.2	5
45	Rhodium and copper 6-methylpicolinate complexes. Structural diversity and supramolecular interaction study. Inorganica Chimica Acta, 2016, 453, 574-582.	1.2	6
46	A crystalline and free-standing silver thiocarboxylate thin-film showing high green to yellow luminescence. Journal of Materials Chemistry C, 2016, 4, 8545-8551.	2.7	15
47	Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4â€Hydroxythiophenol. Chemistry - A European Journal, 2016, 22, 18027-18035.	1.7	43
48	Strong luminescent copper(<scp>i</scp>) halide coordination polymers and dinuclear complexes with thioacetamide and N,N′-donor ligands. CrystEngComm, 2016, 18, 1809-1817.	1.3	28
49	MasterChem: cooking 2D-polymers. Chemical Communications, 2016, 52, 4113-4127.	2.2	104
50	Electrical Conductivity and Strong Luminescence in Copper Iodide Double Chains with Isonicotinato Derivatives. Chemistry - A European Journal, 2015, 21, 17282-17292.	1.7	31
51	Reversible stimulus-responsive Cu(<scp>i</scp>) iodide pyridine coordination polymer. Chemical Communications, 2015, 51, 14306-14309.	2.2	35
52	Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases. Crystal Growth and Design, 2015, 15, 5485-5494.	1.4	22
53	Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties. Inorganic Chemistry, 2015, 54, 10738-10747.	1.9	19
54	Reversible recrystallization process of copper and silver thioacetamide–halide coordination polymers and their basic building blocks. CrystEngComm, 2014, 16, 8224-8231.	1.3	28

#	Article	IF	CITATIONS
55	Supramolecular architectures based on 6-purinethione complexes. Inorganica Chimica Acta, 2014, 417, 142-147.	1.2	3
56	Coordination polymers with nucleobases: From structural aspects to potential applications. Coordination Chemistry Reviews, 2014, 276, 34-58.	9.5	101
57	Electrical Bistability around Room Temperature in an Unprecedented One-Dimensional Coordination Magnetic Polymer. Inorganic Chemistry, 2013, 52, 5943-5950.	1.9	11
58	Cu(i), Co(ii) and Fe(ii) coordination polymers with pyrazine and benzoate as ligands. Spin crossover, spin canting and metamagnetism phenomena. Dalton Transactions, 2013, 42, 13453.	1.6	10
59	Structural Diversity in Paddlewheel Dirhodium(II) Compounds through Ionic Interactions: Electronic and Redox Properties. Crystal Growth and Design, 2013, 13, 4977-4985.	1.4	14
60	Semiconductive and Magnetic One-Dimensional Coordination Polymers of Cu(II) with Modified Nucleobases. Inorganic Chemistry, 2013, 52, 11428-11437.	1.9	38
61	Substituent and Noncovalent Interaction Effects in the Reactivity of Purine Derivatives with Tetracarboxylato-dirhodium(II) Units. Rationalization of a Rare Binding Mode via N3. Inorganic Chemistry, 2013, 52, 2174-2181.	1.9	5
62	Coordination Chemistry of 6-Thioguanine Derivatives with Cobalt: Toward Formation of Electrical Conductive One-Dimensional Coordination Polymers. Inorganic Chemistry, 2013, 52, 5290-5299.	1.9	27
63	Structure and Properties of One-Dimensional Heterobimetallic Polymers Containing Dicyanoaurate and Dirhodium(II) Fragments. Inorganic Chemistry, 2012, 51, 5844-5849.	1.9	15
64	Electrical conductive coordination polymers. Chemical Society Reviews, 2012, 41, 115-147.	18.7	546
65	Structural analysis of a new complex containing tetrapropionatodirhodium units. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C651-C651.	0.3	0
66	MMX Chains and Molecular Species Containing $Rh2n+(n=4,5,and6)$ Units: Electrical Conductivity in Crystal Phase of MMX Polymers. European Journal of Inorganic Chemistry, 2010, 2010, 4924-4932.	1.0	11
67	Single layers of a multifunctional laminar Cu(i,ii) coordination polymer. Chemical Communications, 2010, 46, 3262.	2.2	225
68	Synthesis of Designed Conductive One-Dimensional Coordination Polymers of Ni(II) with 6-Mercaptopurine and 6-Thioguanine. Inorganic Chemistry, 2009, 48, 7931-7936.	1.9	44
69	Unusual Dimeric Zn(II)-cytosine complexes: New models of the interaction of Zn(II) with DNA and RNA. Journal of Inorganic Biochemistry, 2008, 102, 203-208.	1.5	16
70	Direct evidence of nanowires formation from a Cu(i) coordination polymer. Chemical Communications, 2008, , 945-947.	2.2	43
71	An unusual triple parallel interpenetrated 2D Cu-polymer, with a 3D triple interpenetration via H-bonding. CrystEngComm, 2007, 9, 987.	1.3	23
72	Microwave assisted hydrothermal synthesis of a novel Cul-sulfate-pyrazine MOF. Inorganic Chemistry Communication, 2007, 10, 921-924.	1.8	85

#	Article	IF	CITATIONS
73	Interguanine hydrogen-bonding patterns in adducts with water and Zn–purine complexes (purine is) Tj ETQq1 1 Journal of Biological Inorganic Chemistry, 2007, 12, 543-555.	0.78431	4 rgBT /Ove 20
74	Assembling of Dimeric Entities of Cd(II) with 6-Mercaptopurine to Afford One-Dimensional Coordination Polymers:  Synthesis and Scanning Probe Microscopy Characterization. Inorganic Chemistry, 2006, 45, 7642-7650.	1.9	52
75	Stabilization of the non-canonical adenine–adeninium base pair by N(7) coordination of Zn(II). Journal of Inorganic Biochemistry, 2005, 99, 2226-2230.	1.5	19
76	Models of Putative (AH)G(AH)G Nucleobase Quartets. Angewandte Chemie - International Edition, 2005, 44, 5670-5674.	7.2	19
77	From Coordination Polymer Macrocrystals to Nanometric Individual Chains. Advanced Materials, 2005, 17, 1761-1765.	11.1	73
78	Preparation and Characterization of Platinum(II) and (IV) Complexes of 1,3-Diaminepropane and 1,4-Diaminebutane:Â Circumvention of Cisplatin Resistance and DNA Interstrand Cross-Link Formation in CH1cisR Ovarian Tumor Cells. Journal of Medicinal Chemistry, 2002, 45, 1835-1844.	2.9	44
79	5,5′-Diuracilyl Species from Uracil and [AuCl4]â^': Nucleobase Dimerization Brought about by a Metal. Angewandte Chemie - International Edition, 1999, 38, 2274-2275.	7.2	39
80	Creating regular arrangements of nucleobases through metal ion coordination and H bond formation. Pure and Applied Chemistry, 1998, 70, 977-983.	0.9	4
81	Synthesis of several Palladium complexes derived. Journal of Inorganic Biochemistry, 1997, 68, 257-263.	1.5	9
82	Cyclic Metal Complexes of Nucleobases and Other Heterocycles: Molecular Boxes, Rectangles, and Hexagons. Angewandte Chemie International Edition in English, 1997, 36, 1296-1301.	4.4	91
83	Pyrimidine Nucleobases as Versatile and Multidentate Ligands for Heavy Metal Ions. Significance of Metal Binding to the C(5) Sites of Uracil and Cytosine. , 1997, , 511-520.		2
84	Synthesis, characterization, and DNA modification induced by a novel Pt-berenil compound with cytotoxic activity. Journal of Inorganic Biochemistry, 1996, 63, 57-68.	1.5	27
85	A way to obtain cyclopalladation of unsubstituted 2-phenylimidazole derivatives. Journal of Organometallic Chemistry, 1996, 522, 97-103.	0.8	11
86	Cytotoxicity, DNA binding, and reactivity against nucleosides of platinum (II) and (IV) spermine compounds. Journal of Inorganic Biochemistry, 1996, 64, 287-299.	1.5	25
87	Supramolecular Chemistry of Metal–Nucleobase Complexes. , 0, , 95-132.		8