
Danny R Welch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3329998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metastasis: recent discoveries and novel treatment strategies. Lancet, The, 2007, 369, 1742-1757.	6.3	650
2	Defining the Hallmarks of Metastasis. Cancer Research, 2019, 79, 3011-3027.	0.4	445
3	Breast Cancer Metastasis Suppressor 1 Up-regulates miR-146, Which Suppresses Breast Cancer Metastasis. Cancer Research, 2009, 69, 1279-1283.	0.4	358
4	Metastamir: The Field of Metastasis-Regulatory microRNA Is Spreading. Cancer Research, 2009, 69, 7495-7498.	0.4	290
5	Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. International Journal of Cancer, 1991, 47, 227-237.	2.3	183
6	Technical considerations for studying cancer metastasis in vivo. Clinical and Experimental Metastasis, 1997, 15, 272-306.	1.7	172
7	Chromosome Localization and Genomic Structure of the KiSS-1 Metastasis Suppressor Gene (KISS1). Genomics, 1998, 54, 145-148.	1.3	169
8	Metastasis suppressor pathways—an evolving paradigm. Cancer Letters, 2003, 198, 1-20.	3.2	157
9	Breast Cancer Metastasis Suppressor 1 (BRMS1) Forms Complexes with Retinoblastoma-binding Protein 1 (RBP1) and the mSin3 Histone Deacetylase Complex and Represses Transcription. Journal of Biological Chemistry, 2004, 279, 1562-1569.	1.6	156
10	Requirement of KISS1 Secretion for Multiple Organ Metastasis Suppression and Maintenance of Tumor Dormancy. Journal of the National Cancer Institute, 2007, 99, 309-321.	3.0	155
11	Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. , 1997, 71, 1035-1044.		148
12	The Biochemistry of Cancer Dissemination. Critical Reviews in Biochemistry and Molecular Biology, 1997, 32, 175-252.	2.3	146
13	Hedgehog signaling and response to cyclopamine differs in epithelial and stromal cells in benign breast and breast cancer. Cancer Biology and Therapy, 2006, 5, 674-683.	1.5	146
14	Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Research, 2003, 63, 432-40.	0.4	144
15	Metastasis suppressors genes in cancer. International Journal of Biochemistry and Cell Biology, 2008, 40, 874-891.	1.2	140
16	Metastasis Suppressor Genes. International Review of Cell and Molecular Biology, 2011, 286, 107-180.	1.6	136
17	Suppression of Human Melanoma Metastasis by the Metastasis Suppressor Gene, BRMS1. Experimental Cell Research, 2002, 273, 229-239.	1.2	134
18	Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Research, 2004, 7, R46-59.	2.2	129

#	Article	IF	CITATIONS
19	Toward a Drug Development Path That Targets Metastatic Progression in Osteosarcoma. Clinical Cancer Research, 2014, 20, 4200-4209.	3.2	127
20	Tumor Heterogeneity—A â€~Contemporary Concept' Founded on Historical Insights and Predictions. Cancer Research, 2016, 76, 4-6.	0.4	125
21	Metastasis Suppressor Proteins: Discovery, Molecular Mechanisms, and Clinical Application. Clinical Cancer Research, 2006, 12, 3882-3889.	3.2	121
22	The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clinical and Experimental Metastasis, 2000, 18, 519-525.	1.7	117
23	Molecular biology of breast cancer metastasis Genetic regulation of human breast carcinoma metastasis. Breast Cancer Research, 2000, 2, 408-16.	2.2	115
24	Kinetics of Metastatic Breast Cancer Cell Trafficking in Bone. Clinical Cancer Research, 2006, 12, 1431-1440.	3.2	110
25	Breast Cancer Metastasis Suppressor 1 Inhibits Gene Expression by Targeting Nuclear Factor-κB Activity. Cancer Research, 2005, 65, 3586-3595.	0.4	108
26	Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Molecular Cancer, 2007, 6, 6.	7.9	107
27	A small molecule antagonist of the αvβ3integrin suppresses MDA-MB-435 skeletal metastasis. Clinical and Experimental Metastasis, 2004, 21, 119-128.	1.7	105
28	Endogenous Osteonectin/SPARC/BM-40 Expression Inhibits MDA-MB-231 Breast Cancer Cell Metastasis. Cancer Research, 2005, 65, 7370-7377.	0.4	105
29	Genetic background is an important determinant of metastatic potential. Nature Genetics, 2003, 34, 23-24.	9.4	103
30	Increased protein kinase Cδ in mammary tumor cells: relationship to transformation and metastatic progression. Oncogene, 1999, 18, 6748-6757.	2.6	98
31	KISS1 metastasis suppression and emergent pathways. Clinical and Experimental Metastasis, 2003, 20, 11-18.	1.7	96
32	Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clinical and Experimental Metastasis, 2000, 18, 683-693.	1.7	95
33	BRMS1 Suppresses Breast Cancer Experimental Metastasis to Multiple Organs by Inhibiting Several Steps of the Metastatic Process. American Journal of Pathology, 2008, 172, 809-817.	1.9	94
34	Loss of Breast Cancer Metastasis Suppressor 1 Protein Expression Predicts Reduced Disease-Free Survival in Subsets of Breast Cancer Patients. Clinical Cancer Research, 2006, 12, 6702-6708.	3.2	92
35	Enhanced Metastatic Ability of TNF-α-Treated Malignant Melanoma Cells Is Reduced by Intercellular Adhesion Molecule-1 (ICAM-1, CD54) Antisense Oligonucleotides. Experimental Cell Research, 1994, 214, 231-241.	1.2	90
36	In vitroloss of heterozygosity targets thePTEN/MMAC1gene in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9418-9423.	3.3	90

#	Article	IF	CITATIONS
37	KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Letters, 1997, 119, 149-155.	3.2	89
38	Osteopontin Knockdown Suppresses Tumorigenicity of Human Metastatic Breast Carcinoma, MDA-MB-435. Clinical and Experimental Metastasis, 2006, 23, 123-133.	1.7	85
39	Genetic basis of human breast cancer metastasis. Journal of Mammary Gland Biology and Neoplasia, 2001, 6, 441-451.	1.0	83
40	Breast cancer metastasis suppressor 1 coordinately regulates metastasisâ€associated microRNA expression. International Journal of Cancer, 2009, 125, 1778-1785.	2.3	83
41	Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochemical Journal, 2013, 455, 157-167.	1.7	79
42	Metastasis Suppressor KISS1 Seems to Reverse the Warburg Effect by Enhancing Mitochondrial Biogenesis. Cancer Research, 2014, 74, 954-963.	0.4	75
43	Breast cancer cells induce osteoblast apoptosis: A possible contributor to bone degradation. Journal of Cellular Biochemistry, 2004, 91, 265-276.	1.2	74
44	MCF-7 Cells Expressing Nuclear Associated Lysyl Oxidase-like 2 (LOXL2) Exhibit an Epithelial-to-Mesenchymal Transition (EMT) Phenotype and Are Highly Invasive in Vitro. Journal of Biological Chemistry, 2013, 288, 30000-30008.	1.6	74
45	Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochemical and Biophysical Research Communications, 2006, 348, 1429-1435.	1.0	73
46	The KISS1 metastasis suppressor: mechanistic insights and clinical utility. Frontiers in Bioscience - Landmark, 2006, 11, 647.	3.0	72
47	The KISS1 metastasis suppressor: A good night kiss for disseminated cancer cells. European Journal of Cancer, 2010, 46, 1283-1289.	1.3	72
48	Implications of tumor progression on clinical oncology. Clinical and Experimental Metastasis, 1985, 3, 151-188.	1.7	71
49	The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762nf mammary adenocarcinoma cells. International Journal of Cancer, 1988, 42, 748-759.	2.3	71
50	Metastasis-suppressed C8161 melanoma cells arrest in lung but fail to proliferate. Clinical and Experimental Metastasis, 1999, 17, 601-607.	1.7	70
51	Alterations of BRMS1-ARID4A Interaction Modify Gene Expression but Still Suppress Metastasis in Human Breast Cancer Cells. Journal of Biological Chemistry, 2008, 283, 7438-7444.	1.6	70
52	The skeleton as a unique environment for breast cancer cells. Clinical and Experimental Metastasis, 2003, 20, 275-284.	1.7	68
53	Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. British Journal of Cancer, 2014, 110, 2054-2062.	2.9	68
54	Metastasis suppressed, but tumorigenicity and local invasiveness unaffected, in the human melanoma cell line MelJuSo after introduction of human chromosomes 1 or 6. , 1996, 15, 284-299.		67

#	Article	IF	CITATIONS
55	Breast cancer metastatic potential: Correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. International Journal of Cancer, 2004, 111, 693-697.	2.3	66
56	Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERα negative breast cancer cell lines. Clinical and Experimental Metastasis, 2011, 28, 437-449.	1.7	63
57	Chloroquine-Inducible Par-4 Secretion Is Essential for Tumor Cell Apoptosis and Inhibition of Metastasis. Cell Reports, 2017, 18, 508-519.	2.9	61
58	KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical and Experimental Metastasis, 2010, 27, 591-600.	1.7	60
59	Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Research, 2004, 24, 1003-9.	0.5	59
60	Mitochondrial Genetics Regulate Breast Cancer Tumorigenicity and Metastatic Potential. Cancer Research, 2015, 75, 4429-4436.	0.4	58
61	Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Communications Biology, 2020, 3, 193.	2.0	58
62	Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clinical and Experimental Metastasis, 2008, 25, 753-763.	1.7	57
63	MDA-MB-435 human breast carcinoma metastasis to bone. Clinical and Experimental Metastasis, 2003, 20, 327-334.	1.7	56
64	Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Research, 2005, 65, 713-7.	0.4	56
65	Human melanoma metastasis is inhibited following ex vivo treatment with an antisense oligonucleotide to protein kinase C-α. Cancer Letters, 1998, 128, 65-70.	3.2	55
66	Roles of mitochondria in the hallmarks of metastasis. British Journal of Cancer, 2021, 124, 124-135.	2.9	55
67	Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clinical and Experimental Metastasis, 2008, 25, 893-901.	1.7	54
68	Metastasis suppressors and the tumor microenvironment. Seminars in Cancer Biology, 2011, 21, 113-122.	4.3	54
69	Breast Cancer Metastasis Suppressor-1 Promoter Methylation in Primary Breast Tumors and Corresponding Circulating Tumor Cells. Molecular Cancer Research, 2013, 11, 1248-1257.	1.5	54
70	Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell's Journey. Cancer Microenvironment, 2014, 7, 117-131.	3.1	54
71	Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells. Oncotarget, 2015, 6, 27661-27673.	0.8	54
72	Breast cancer metastasis suppressor 1: update. Clinical and Experimental Metastasis, 2003, 20, 45-50.	1.7	52

#	Article	IF	CITATIONS
73	MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene, 2013, 32, 462-470.	2.6	51
74	Mitochondrial Genomic Backgrounds Affect Nuclear DNA Methylation and Gene Expression. Cancer Research, 2017, 77, 6202-6214.	0.4	51
75	Use of the membrane invasion culture system (mics) as a screen for anti-invasive agents. International Journal of Cancer, 1989, 43, 449-457.	2.3	50
76	The Histone Demethylase KDM3A, Increased in Human Pancreatic Tumors, Regulates Expression of DCLK1 and Promotes Tumorigenesis in Mice. Gastroenterology, 2019, 157, 1646-1659.e11.	0.6	50
77	Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis. Oncogene, 2011, 30, 896-906.	2.6	49
78	Metastasis suppressors in breast cancers: mechanistic insights and clinical potential. Journal of Molecular Medicine, 2014, 92, 13-30.	1.7	47
79	Molecular Mechanisms Controlling Human Melanoma Progression and Metastasis. Pathobiology, 1997, 65, 311-330.	1.9	46
80	A human melanoma metastasis-suppressor locus maps to 6q16.3-q23. , 2000, 86, 524-528.		46
81	Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression. Clinical and Experimental Metastasis, 2007, 24, 551-565.	1.7	46
82	Breast Cancer Metastasis Suppressor-1 Differentially Modulates Growth Factor Signaling. Journal of Biological Chemistry, 2008, 283, 28354-28360.	1.6	46
83	Free fatty acids enhance breast cancer cell migration through plasminogen activator inhibitor-1 and SMAD4. Laboratory Investigation, 2009, 89, 1221-1228.	1.7	46
84	Identification and characterization of the murine ortholog(brms1) of breast-cancer metastasis suppressor 1(BRMS1). International Journal of Cancer, 2002, 97, 15-20.	2.3	45
85	Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells. Clinical and Experimental Metastasis, 2004, 21, 149-157.	1.7	45
86	Allelic Variation and Differential Expression of the mSIN3A Histone Deacetylase Complex Gene Arid4b Promote Mammary Tumor Growth and Metastasis. PLoS Genetics, 2012, 8, e1002735.	1.5	45
87	Pericyte-Like Location of GFP-Tagged Melanoma Cells. American Journal of Pathology, 2004, 164, 1191-1198.	1.9	44
88	BRMS1 contributes to the negative regulation of uPA gene expression through recruitment of HDAC1 to the NF-κB binding site of the uPA promoter. Clinical and Experimental Metastasis, 2009, 26, 229-237.	1.7	44
89	Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy. Autophagy, 2017, 13, 1905-1923.	4.3	44
90	Unraveling the enigmatic complexities of BRMS1-mediated metastasis suppression. FEBS Letters, 2011, 585, 3185-3190.	1.3	43

#	Article	IF	CITATIONS
91	Influence of polyamines on in vitro and in vivo features of aggressive and metastatic behavior by human breast cancer cells. Clinical and Experimental Metastasis, 2002, 19, 95-105.	1.7	42
92	Downregulation of osteopontin contributes to metastasis suppression by breast cancer metastasis suppressor 1. International Journal of Cancer, 2008, 123, 526-534.	2.3	42
93	Metastasis Suppressors and the Tumor Microenvironment. Cancer Microenvironment, 2008, 1, 1-11.	3.1	41
94	Suppression of human melanoma metastasis following introduction of chromosome 6 is independent of NME1 (Nm23). Clinical and Experimental Metastasis, 1997, 15, 259-265.	1.7	40
95	A Shift from Nuclear to Cytoplasmic Breast Cancer Metastasis Suppressor 1 Expression Is Associated with Highly Proliferative Estrogen Receptor-Negative Breast Cancers. Tumor Biology, 2009, 30, 148-159.	0.8	40
96	Nuclear localization of Kaiso promotes the poorly differentiated phenotype and EMT in infiltrating ductal carcinomas. Clinical and Experimental Metastasis, 2014, 31, 497-510.	1.7	40
97	Clinical and Biological Significance of KISS1 Expression in Prostate Cancer. American Journal of Pathology, 2012, 180, 1170-1178.	1.9	39
98	Microarrays bring new insights into understanding of breast cancer metastasis to bone. Breast Cancer Research, 2003, 6, 61.	2.2	38
99	Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Molecular Carcinogenesis, 1998, 21, 111-120.	1.3	37
100	Do We Need to Redefine a Cancer Metastasis and Staging Definitions?. Breast Disease, 2007, 26, 3-12.	0.4	37
101	Metastasis Suppressors and Their Roles in Breast Carcinoma. Journal of Mammary Gland Biology and Neoplasia, 2007, 12, 175-190.	1.0	37
102	Modulation of mammary cancer cell migration by 15-deoxy-î"12,14-prostaglandin J2: implications for anti-metastatic therapy. Biochemical Journal, 2010, 430, 69-78.	1.7	35
103	Angiotropism of Human Melanoma: Studies Involving In Transit and Other Cutaneous Metastases and the Chicken Chorioallantoic Membrane. American Journal of Dermatopathology, 2006, 28, 187-193.	0.3	34
104	Preclinical Drug Development Must Consider the Impact on Metastasis. Clinical Cancer Research, 2009, 15, 4529-4530.	3.2	34
105	Multiple phenotypic divergence of mammary adenocarcinoma cell clones. Clinical and Experimental Metastasis, 1984, 2, 333-355.	1.7	33
106	Breast Cancer Progression: Controversies and Consensus in the Molecular Mechanisms of Metastasis and EMT. Journal of Mammary Gland Biology and Neoplasia, 2007, 12, 99-102.	1.0	33
107	New insights into the role of CXCR4 in prostate cancer metastasis. Cancer Biology and Therapy, 2008, 7, 1849-1851.	1.5	33
108	Phenotypic drift and heterogeneity in response of metastatic mammary adenocarcinoma cell clones to Adriamycin, 5-fluoro-2?-deoxyuridine and methotrexate treatment in vitro. Clinical and Experimental Metastasis, 1983, 1, 317-325.	1.7	32

#	Article	IF	CITATIONS
109	Multiple forms of BRMS1 are differentially expressed in the MCF10 isogenic breast cancer progression model. Clinical and Experimental Metastasis, 2009, 26, 89-96.	1.7	32
110	C16 laminin peptide increases angiotropic extravascular migration of human melanoma cells in a shell-less chick chorioallantoic membrane assay. British Journal of Dermatology, 2007, 157, 780-782.	1.4	31
111	Homotypic Gap Junctional Communication Associated with Metastasis Suppression Increases with PKA Activity and Is Unaffected by PI3K Inhibition. Cancer Research, 2010, 70, 10002-10011.	0.4	31
112	Roles of the mitochondrial genetics in cancer metastasis: not to be ignored any longer. Cancer and Metastasis Reviews, 2018, 37, 615-632.	2.7	31
113	Osteoprotegrin and the bone homing and colonization potential of breast cancer cells. Journal of Cellular Biochemistry, 2008, 103, 30-41.	1.2	30
114	Human Breast Fibroblasts Inhibit Growth of the MCF10AT Xenograft Model of Proliferative Breast Disease. American Journal of Pathology, 2007, 170, 1064-1076.	1.9	29
115	Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival. BMC Cancer, 2012, 12, 73.	1.1	28
116	Mitochondrial Bioenergetics of Metastatic Breast Cancer Cells in Response to Dynamic Changes in Oxygen Tension: Effects of HIF-1α. PLoS ONE, 2013, 8, e68348.	1.1	28
117	Mitochondrial Haplotype Alters Mammary Cancer Tumorigenicity and Metastasis in an Oncogenic Driver–Dependent Manner. Cancer Research, 2017, 77, 6941-6949.	0.4	28
118	Suppression of murine mammary carcinoma metastasis by the murine ortholog of breast cancer metastasis suppressor 1 (Brms1). Cancer Letters, 2006, 235, 260-265.	3.2	27
119	Mechanisms of breast cancer metastasis. Clinical and Experimental Metastasis, 2022, 39, 117-137.	1.7	27
120	Generation of Mitochondrial-nuclear eXchange Mice via Pronuclear Transfer. Bio-protocol, 2016, 6, .	0.2	27
121	Inhibition of Tumor Cell Invasion by Verapamil. Pigment Cell & Melanoma Research, 1991, 4, 225-233.	4.0	25
122	Clinical significance of KISS1 protein expression for brain invasion and metastasis. Cancer, 2012, 118, 2096-2105.	2.0	25
123	Imaging of epidermal growth factor receptor on single breast cancer cells using surface-enhanced Raman spectroscopy. Analytica Chimica Acta, 2014, 843, 73-82.	2.6	25
124	U-77,863: a novel cinnanamide isolated from Streptomyces griseoluteus that inhibits cancer invasion and metastasis. Clinical and Experimental Metastasis, 1993, 11, 201-212.	1.7	24
125	Metastasis of hormone-independent breast cancer to lung and bone is decreased by α-difluoromethylornithine treatment. Breast Cancer Research, 2005, 7, R819-27.	2.2	24
126	Maintaining GFP Tissue Fluorescence through Bone Decalcification and Long-Term Storage. BioTechniques, 2002, 33, 1197-1200.	0.8	23

#	Article	IF	CITATIONS
127	Effects of alpha-difluoromethylornithine on local recurrence and pulmonary metastasis from MDA-MB-435 breast cancer xenografts in nude mice. Clinical and Experimental Metastasis, 2003, 20, 321-325.	1.7	23
128	Linking metastasis suppression with metastamiR regulation. Cell Cycle, 2009, 8, 2673-2675.	1.3	23
129	Genome-wide in vivo RNAi screen identifies ITIH5 as a metastasis suppressor in pancreatic cancer. Clinical and Experimental Metastasis, 2017, 34, 229-239.	1.7	23
130	A New Member of the Growing Family of Metastasis Suppressors Identified in Prostate Cancer. Journal of the National Cancer Institute, 2003, 95, 839-841.	3.0	21
131	KISS1 in breast cancer progression and autophagy. Cancer and Metastasis Reviews, 2019, 38, 493-506.	2.7	21
132	Furin Is the Major Proprotein Convertase Required for KISS1-to-Kisspeptin Processing. PLoS ONE, 2014, 9, e84958.	1.1	21
133	Chromosome and DNA analyses of rat 13762NF mammary adenocarcinoma cell lines and clones of different metastatic potentials. Clinical and Experimental Metastasis, 1984, 2, 271-286.	1.7	20
134	Multiple phenotypic divergence of mammary adenocarcinoma cell clones Clinical and Experimental Metastasis, 1984, 2, 357-371.	1.7	20
135	KISS1 in metastatic cancer research and treatment: potential and paradoxes. Cancer and Metastasis Reviews, 2020, 39, 739-754.	2.7	20
136	3,5-Bis(2,4-Difluorobenzylidene)-4-piperidone, a Novel Compound That Affects Pancreatic Cancer Growth and Angiogenesis. Molecular Cancer Therapeutics, 2011, 10, 2146-2156.	1.9	19
137	The C-Terminal Putative Nuclear Localization Sequence of BReast cancer Metastasis Suppressor 1, BRMS1, Is Necessary for Metastasis Suppression. PLoS ONE, 2013, 8, e55966.	1.1	19
138	The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation. Journal of Molecular Medicine, 2017, 95, 951-963.	1.7	19
139	The second genome: Effects of the mitochondrial genome on cancer progression. Advances in Cancer Research, 2019, 142, 63-105.	1.9	19
140	MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clinical and Experimental Metastasis, 2015, 32, 301-311.	1.7	18
141	Over-expression of the BRMS1 family member SUDS3 does not suppress metastasis of human cancer cells. Cancer Letters, 2009, 276, 32-37.	3.2	17
142	Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Molecular Carcinogenesis, 2014, 53, 1011-1026.	1.3	17
143	A MSC-ing link in metastasis?. Nature Medicine, 2007, 13, 1289-1291.	15.2	16
144	BRMS1: a multifunctional signaling moleculeÂin metastasis. Cancer and Metastasis Reviews, 2020, 39, 755-768.	2.7	16

#	Article	IF	CITATIONS
145	Isolation, purification, synthesis, and antiinvasive/antimetastatic activity of U-77863 AND U-77864 from Streptomyces griseoluteus, strain WS6724 Journal of Antibiotics, 1992, 45, 1827-1836.	1.0	15
146	Cyclin-dependent kinase-mediated phosphorylation of breast cancer metastasis suppressor 1 (BRMS1) affects cell migration. Cell Cycle, 2016, 15, 137-151.	1.3	15
147	Mitochondrial Haplotype of the Host Stromal Microenvironment Alters Metastasis in a Non-cell Autonomous Manner. Cancer Research, 2020, 80, 1118-1129.	0.4	15
148	Comparative sequence analysis in eight inbred strains of the metastasis modifier QTL candidate gene Brms1. Mammalian Genome, 2002, 13, 289-292.	1.0	14
149	Biologic considerations for drug targeting in cancer patients. Cancer Treatment Reviews, 1987, 14, 351-358.	3.4	13
150	Expression of the Breast Cancer Metastasis Suppressor 1 (BRMS1) maintains in vitro chemosensitivity of breast cancer cells. Cancer Letters, 2009, 281, 100-107.	3.2	12
151	Protein Signatures in Human MDA-MB-231 Breast Cancer Cells Indicating a More Invasive Phenotype Following Knockdown of Human Endometase/Matrilysin-2 by siRNA. Journal of Cancer, 2011, 2, 165-176.	1.2	12
152	Ubiquitous Brms1 expression is critical for mammary carcinoma metastasis suppression via promotion of apoptosis. Clinical and Experimental Metastasis, 2012, 29, 315-325.	1.7	12
153	Pre-osteoblastic MC3T3-E1 cells promote breast cancer growth in bone in a murine xenograft model. Chinese Journal of Cancer, 2011, 30, 189-196.	4.9	12
154	Hydrogen peroxide induces oxidative DNA damage in rat type II pulmonary epithelial cells. , 1999, 33, 273-278.		11
155	Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clinical and Experimental Metastasis, 2020, 37, 209-223.	1.7	11
156	Suppression of pancreatic cancer liver metastasis by secretion-deficient ITIH5. British Journal of Cancer, 2021, 124, 166-175.	2.9	11
157	Synergistic anti-proliferative activity of JQ1 and GSK2801 in triple-negative breast cancer. BMC Cancer, 2022, 22, .	1.1	11
158	Essential Components of Cancer Education. Cancer Research, 2015, 75, 5202-5205.	0.4	10
159	Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 181, 218-225.	2.0	10
160	The isolated C-terminal nuclear localization sequence of the breast cancer metastasis suppressor 1 is disordered. Archives of Biochemistry and Biophysics, 2019, 664, 95-101.	1.4	10
161	Chondroitin sulfate proteoglycan 4 enhanced melanoma motility and growth requires a cysteine in the core protein transmembrane domain. Melanoma Research, 2019, 29, 365-375.	0.6	10

162 Zena Werb (1945–2020). Cancer Cell, 2020, 38, 1-2.

7.7 9

#	Article	IF	CITATIONS
163	Heat stress proteins and experimental cancer metastasis. International Journal of Hyperthermia, 1986, 2, 253-266.	1.1	8
164	Subsets of ATPâ€sensitive potassium channel (K _{ATP}) inhibitors increase gap junctional intercellular communication in metastatic cancer cell lines independent of SUR expression. FEBS Letters, 2012, 586, 27-31.	1.3	8
165	Suppression of pancreatic cancer growth and metastasis by HMP19 identified through genomeâ€wide shRNA screen. International Journal of Cancer, 2016, 139, 628-638.	2.3	8
166	NGF reprograms metastatic melanoma to a bipotent glial-melanocyte neural crest-like precursor. Biology Open, 2017, 7, .	0.6	8
167	Suppression of C8161 Melanoma Metastatic Ability by Chromosome 6 Induces Differentiation-Associated Tyrosinase and Decreases Proliferation on Adhesion-Restrictive Substrates Mediated by Overexpression of p21WAF1 and Down-Regulation of bcl-2 and Cyclin D3. Biochemical and Biophysical Research Communications. 2001. 281. 159-165.	1.0	7
168	In vitro biophysical, microspectroscopic and cytotoxic evaluation of metastatic and non-metastatic cancer cells in responses to anti-cancer drug. Analytical Methods, 2015, 7, 10162-10169.	1.3	7
169	Automated quantitative image analysis for ex vivo metastasis assays reveals differing lung composition requirements for metastasis suppression by KISS1. Clinical and Experimental Metastasis, 2018, 35, 77-86.	1.7	6
170	Mitochondrial polymorphisms contribute to aging phenotypes in MNX mouse models. Cancer and Metastasis Reviews, 2018, 37, 633-642.	2.7	6
171	Mucosally-derived HPV-40 can infect both human genital foreskin and cutaneous hand skin tissues grafted into athymic mice. Virus Research, 2003, 93, 109-114.	1.1	5
172	Nuclear magnetic resonance and circular dichroism study of metastin (Kisspeptin-54) structure in solution. Clinical and Experimental Metastasis, 2009, 26, 527-533.	1.7	5
173	Unraveling the 'TGF-β paradox' one metastamir at a time. Breast Cancer Research, 2013, 15, 305.	2.2	5
174	Invasion and Metastasis. , 2015, , 269-284.e2.		5
175	Preclinical Evaluation of Gilteritinib on NPM1-ALK–Driven Anaplastic Large Cell Lymphoma Cells. Molecular Cancer Research, 2021, 19, 913-920.	1.5	5
176	Factors Involved in the Development and Maintenance of Tumor Heterogeneity. , 1989, , 279-301.		5
177	Beyond the Primary Tumor: Progression, Invasion, and Metastasis. , 2017, , 203-216.		4
178	Short communication: Rat mammary adenocarcinoma heat-stress proteins in vivo. International Journal of Hyperthermia, 1987, 3, 467-473.	1.1	3
179	Experimental model for locally recurring mammary tumors. Development, morphology, karyotype, growth kinetics, and experimental metastatic potential. Cancer, 1989, 63, 1353-1362.	2.0	2

#	Article	IF	CITATIONS
181	Growth Regulatory Pathways Contributing to Organ Selectivity of Metastasis. , 0, , 204-214.		2
182	Metronomic Chemotherapy for Treatment of Metastatic Disease: From Preclinical Research to Clinical Trials. , 0, , 573-586.		2
183	Discovery and Development of Drugs Targeting Tumor Invasion and Metastasis. , 0, , 600-611.		2
184	Tumor Cell Invasion—Not All Barriers Are Created Equal. Cancer Research, 2016, 76, 1675-1676.	0.4	2
185	Preface. Advances in Cancer Research, 2016, 132, xi-xiv.	1.9	2
186	Invasion and Metastasis. , 2008, , 253-264.		1
187	The Role of Radiotherapy in the Treatment of Metastatic Disease. , 0, , 612-621.		1
188	Germline Variation and Other Host Determinants of Metastatic Potential. , 0, , 96-104.		1
189	The Influence of Aging and Cellular Senescence on Metastasis. , 0, , 105-116.		1
190	Metastasis-Promoting Genes. , 0, , 55-63.		1
191	The Continuum of Epithelial Mesenchymal Transition – Implication of Hybrid States for Migration and Survival in Development and Cancer. , 0, , 117-130.		1
192	Function and Expression of the uPA/uPAR System in Cancer Metastasis. , 0, , 223-236.		1
193	Primary Brain Tumors and Cerebral Metastases. , 2011, , 282-293.		1
194	Preface. Cancer and Metastasis Reviews, 2012, 31, 417-418.	2.7	1
195	Abstract 3866: The KISS1 metastasis suppressor appears to reverse the Warburg effect by enhancing mitochondria biogenesis , 2013, , .		1
196	Abstract P4-01-16: Overcome chemoresistance of triple-negative breast cancer by inhibiting the RNA-binding protein HuR. Cancer Research, 2022, 82, P4-01-16-P4-01-16.	0.4	1
197	Title is missing!. Journal of Mammary Gland Biology and Neoplasia, 2001, 6, 373-374.	1.0	0

#	Article	IF	CITATIONS
199	Role of Matrix Metalloproteinases in Tumor Invasion and Metastasis. , 0, , 183-190.		Ο
200	Drosophila and Zebrafish: Genetic Models for Cancer Metastasis. , 0, , 15-24.		0
201	Metastasis Genes: Epigenetics. , 0, , 85-95.		0
202	Metastasis of Primary Liver Cancer. , 0, , 344-355.		0
203	Critical Issues of Research on Circulating and Disseminated Tumor Cells in Cancer Patients. , 0, , 486-500.		0
204	Preserving Bone Health in Malignancy and Complications of Bone Metastases. , 0, , 538-551.		0
205	Role of Platelets and Thrombin in Metastasis. , 0, , 552-562.		0
206	The Role of Metastasis Suppressor Genes in Metastasis. , 0, , 64-76.		0
207	Apoptosis, Anoikis, and Senescence. , 0, , 131-147.		0
208	Gynecologic Malignancies. , 0, , 440-455.		0
209	The Biology and Treatment of Metastatic Testicular Cancer. , 0, , 465-474.		0
210	Overview: Biology Is the Foundation of Therapy. , 0, , xvii-xviii.		0
211	Introduction to Basic Research. , 0, , 1-4.		0
212	Animal Models of Cancer Metastasis. , 0, , 5-14.		0
213	Computational Models. , 0, , 25-39.		0
214	Intravital Microscopy to Visualize Invasion and Metastasis. , 0, , 40-54.		0
215	Stromal-Derived Factors That Dictate Organ-Specific Metastasis. , 0, , 77-84.		0
216	Metastatic Inefficiency and Tumor Dormancy. , 0, , 148-154.		0

0

#	Article	IF	CITATIONS
217	Role of Inflammation in Metastatic Progression. , 0, , 155-166.		0
218	Proteolytic Cascades in Invasion and Metastasis. , 0, , 167-182.		0
219	Cell-Derived Microvesicles and Metastasis. , 0, , 191-198.		0
220	Exploring the Earliest Steps in Metastasis: The Pre-metastatic Niche. , 0, , 199-203.		0
221	Determinants of Organ-Specific Metastasis. , 0, , 215-222.		0
222	The Lymphatics: On the Route to Cancer Metastasis. , 0, , 237-254.		0
223	Introduction to Clinical Research. , 0, , 255-255.		0
224	Sarcoma. , 0, , 256-263.		0
225	Head and Neck Cancer Metastasis. , 0, , 294-312.		0
226	Cutaneous Melanoma: Therapeutic Approaches for Metastatic Disease. , 0, , 313-324.		0
227	Gastric Cancer Metastasis. , 0, , 325-332.		0
228	Metastatic Pancreatic Cancer., 0,, 333-343.		0
229	Advances in Management of Metastatic Colorectal Cancer. , 0, , 356-368.		0
230	Metastatic Thyroid Cancer: Evaluation and Treatment. , 0, , 382-386.		0
231	Metastatic Renal Cell Carcinoma. , 0, , 387-394.		0
232	Bone Complications of Myeloma and Lymphoma. , 0, , 417-424.		0
233	Breast Metastasis. , 0, , 425-439.		0

Prostate Cancer Metastasis: Thoughts on Biology and Therapeutics. , 0, , 456-464.

#	Article	IF	CITATIONS
235	Applications of Proteomics to Metastasis Diagnosis and Individualized Therapy. , 0, , 475-485.		Ο
236	Lymphatic Mapping and Sentinel Lymph Node Biopsy. , 0, , 501-515.		0
237	Molecular Imaging and Metastasis. , 0, , 516-537.		0
238	Cancer Nanotechnology Offers Great Promise for Cancer Research and Therapy. , 0, , 563-572.		0
239	Prospects for Clinical Trials of Metastasis Inhibitors. , 0, , 622-626.		0
240	Targeting the untargetable? Nodal expression in TNBC. Cell Cycle, 2016, 15, 1400-1400.	1.3	0
241	Metastasis of Hormone Receptor Positive Breast Cancer. Cancer Treatment and Research, 2009, 147, 1-22.	0.2	0
242	BRMS1., 2011, , 570-571.		0
243	KiSS1., 2011, , 1944-1945.		0
244	Metastasis Suppressor Gene. , 2011, , 2265-2267.		0
245	BRMS1., 2014, , 1-3.		0
246	KISS1., 2014, , 1-3.		0
247	Metastasis Suppressor Gene. , 2015, , 2787-2791.		0
248	KISS1. , 2017, , 2399-2400.		0
249	BRMS1., 2017, , 703-704.		0
250	Mitochondrial genetics – New model uncovering roles in tumorigenicity and metastasis. Oncoscience, 2018, 5, 71-72.	0.9	0
251	Metastasis Suppressor Genes: A Brief Review of an Expanding Field. , 2005, , 419-435.		0
252	Perturbation of BRMS1 interactome reveals pathways that impact metastasis. PLoS ONE, 2021, 16, e0259128.	1.1	0

#	Article	IF	CITATIONS
253	Reversal chemotherapeutic resistance of tripleâ€negative breast cancer via functionally inhibiting RNAâ€binding protein HuR. FASEB Journal, 2022, 36, .	0.2	Ο
254	Abstract 1780: Functional inhibition of RNA-binding protein HuR reverses chemotherapeutic resistance in triple-negative breast cancer. Cancer Research, 2022, 82, 1780-1780.	0.4	0