
Alfred Sholl-Franco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3329762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ATP controls cell cycle and induces proliferation in the mouse developing retina. International Journal of Developmental Neuroscience, 2010, 28, 63-73.	0.7	45
2	Signal transduction pathways associated with ATPâ€induced proliferation of cell progenitors in the intact embryonic retina. International Journal of Developmental Neuroscience, 2007, 25, 499-508.	0.7	38
3	Interleukin-2 and interleukin-4 increase the survival of retinal ganglion cells in culture. NeuroReport, 2001, 12, 109-112.	0.6	28
4	Expression of GAP-43 during development and after monocular enucleation in the rat superior colliculus. Neuroscience Letters, 2010, 477, 23-27.	1.0	25
5	IL-4 increases GABAergic phenotype in rat retinal cell cultures: involvement of muscarinic receptors and protein kinase C. Journal of Neuroimmunology, 2002, 133, 20-29.	1.1	20
6	Interleukin-4 blocks proliferation of retinal progenitor cells and increases rod photoreceptor differentiation through distinct signaling pathways. Journal of Neuroimmunology, 2008, 196, 82-93.	1.1	20
7	PMA decreases the proliferation of retinal cells in vitro: the involvement of acetylcholine and BDNF. Neurochemistry International, 2003, 42, 73-80.	1.9	17
8	Protein kinases JAK and ERK mediate protective effect of interleukin-2 upon ganglion cells of the developing rat retina. Journal of Neuroimmunology, 2011, 233, 120-126.	1.1	16
9	In Vitro Effects of Bevacizumab Treatment on Newborn Rat Retinal Cell Proliferation, Death, and Differentiation. , 2012, 53, 7904.		15
10	Interleukinâ€4 blocks thapsigarginâ€induced cell death in rat rod photoreceptors: Involvement of cAMP/PKA pathway. Journal of Neuroscience Research, 2009, 87, 2167-2174.	1.3	13
11	Interleukinâ€4 as a Neuromodulatory Cytokine. Annals of the New York Academy of Sciences, 2009, 1153, 65-75.	1.8	12
12	Intravitreous interleukin-2 treatment and inflammation modulates glial cells activation and uncrossed retinotectal development. Neuroscience, 2012, 200, 223-236.	1.1	11
13	Antagonistic and synergistic effects of combined treatment with interleukin-2 and interleukin-4 on mixed retinal cell cultures. Journal of Neuroimmunology, 2001, 113, 40-48.	1.1	9
14	Cellular stress response in human Müller cells (MIO-M1) after bevacizumab treatment. Experimental Eye Research, 2017, 160, 1-10.	1.2	8
15	Adenine Nucleotides Control Proliferation In Vivo of Rat Retinal Progenitors by P2Y1 Receptor. Molecular Neurobiology, 2017, 54, 5142-5155.	1.9	8
16	Effect of Spleen-Cell-Conditioned Medium on [³ H]-Choline Uptake by Retinal Cells in vitro Is Mediated by IL-2. NeuroImmunoModulation, 2000, 7, 195-207.	0.9	7
17	Polylaminin recognition by retinal cells. Journal of Neuroscience Research, 2014, 92, 24-34.	1.3	6
18	Bevacizumab Reduces Neurocan Content and Gene Expression in Newborn Rat Retina In Vitro. , 2014, 55,		6

5109.

#	Article	IF	CITATIONS
19	Conditioned medium from activated spleen cells supports the survival of rat retinal cells in vitro. Brazilian Journal of Medical and Biological Research, 1997, 30, 1299-1303.	0.7	5
20	Rod photoreceptor cell death is induced by okadaic acid through activation of PKC and L-type voltage-dependent Ca2+ channels and prevented by IGF-1. Neurochemistry International, 2010, 57, 128-135.	1.9	4
21	Intravitreal Interleukin-2 modifies retinal excitatory circuits and retinocollicular innervation. Experimental Eye Research, 2021, 204, 108442.	1.2	3
22	COGNITION AND LOGIC: ADAPTATION AND APPLICATION OF INCLUSIVE TEACHING MATERIALS FOR HANDS-ON WORKSHOPS. Journal of Research in Special Educational Needs, 2016, 16, 696-700.	0.5	2
23	Tissue Biology of Proliferation and Cell Death Among Retinal Progenitor Cells. , 2010, , 191-230.		0
24	AVALIAÇÃO DA EFICÃCIA DE UM PROGRAMA DE ESTIMULAÇÃO CORTICAL PARA MELHORA DA ATENÇÃO CRIANÇAS COM TDAH. Saúde, 2014, 40, .	DE.1	0