
Eun-Kyoung Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3329407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Baicalin and baicalein inhibit transforming growth factor-β1-mediated epithelial-mesenchymal transition in human breast epithelial cells. Biochemical and Biophysical Research Communications, 2015, 458, 707-713.	2.1	69
2	Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Archives of Pharmacal Research, 2017, 40, 655-675.	6.3	53
3	Psoralidin, a coumestan analogue, as a novel potent estrogen receptor signaling molecule isolated from Psoralea corylifolia. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1403-1406.	2.2	52
4	Cytotoxic constituents ofPsoralea corylifolia. Archives of Pharmacal Research, 2001, 24, 211-213.	6.3	49
5	Cyclooxygenase-2 Inhibitory Phenylbutenoids from the Rhizomes of Zingiber cassumunar. Chemical and Pharmaceutical Bulletin, 2005, 53, 1466-1468.	1.3	48
6	Anti-epileptic activity of daidzin in PTZ-induced mice model by targeting oxidative stress and BDNF/VEGF signaling. NeuroToxicology, 2020, 79, 150-163.	3.0	42
7	New Compounds with DNA Strand-Scission Activity from the Combined Leaf and Stem ofUvaria hamiltonii. Journal of Natural Products, 1998, 61, 446-450.	3.0	40
8	Spiroindole Alkaloids and Spiroditerpenoids from <i>Aspergillus duricaulis</i> and Their Potential Neuroprotective Effects. Journal of Natural Products, 2015, 78, 2572-2579.	3.0	37
9	Heme oxygenase-1-mediated anti-inflammatory effects of tussilagonone on macrophages and 12- O -tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. International Immunopharmacology, 2016, 34, 155-164.	3.8	36
10	Suppression of TRPV1/TRPM8/P2Y Nociceptors by Withametelin via Downregulating MAPK Signaling in Mouse Model of Vincristine-Induced Neuropathic Pain. International Journal of Molecular Sciences, 2021, 22, 6084.	4.1	36
11	Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast. Free Radical Biology and Medicine, 2017, 112, 191-199.	2.9	34
12	Alleviation of Memory Deficit by Bergenin via the Regulation of Reelin and Nrf-2/NF-κB Pathway in Transgenic Mouse Model. International Journal of Molecular Sciences, 2021, 22, 6603.	4.1	31
13	Neuroprotective effect of 25-Methoxyhispidol A against CCl4-induced behavioral alterations by targeting VEGF/BDNF and caspase-3 in mice. Life Sciences, 2020, 253, 117684.	4.3	29
14	Dehydrocostus lactone, a sesquiterpene from Saussurea lappa Clarke , suppresses allergic airway inflammation by binding to dimerized translationally controlled tumor protein. Phytomedicine, 2018, 43, 46-54.	5.3	28
15	Continentalic acid exhibited nephroprotective activity against the LPS and E. coli-induced kidney injury through inhibition of the oxidative stress and inflammation. International Immunopharmacology, 2020, 80, 106209.	3.8	28
16	A New Cytotoxic Phenylbutenoid Dimer from the Rhizomes ofZingiber cassumunar. Planta Medica, 2004, 70, 1095-1097.	1.3	26
17	Peroxynitrite-Scavenging Glycosides from the Stem Bark of <i>Catalpa ovata</i> . Journal of Natural Products, 2017, 80, 2240-2251.	3.0	24
18	Metabolomics approach for the discrimination of raw and steamed Gastrodia elata using liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94, 132-138.	2.8	23

#	Article	IF	CITATIONS
19	Tuberostemonine N, an active compound isolated from Stemona tuberosa, suppresses cigarette smoke-induced sub-acute lung inflammation in mice. Phytomedicine, 2016, 23, 79-86.	5.3	23
20	Skullcapflavone II Inhibits Degradation of Type I Collagen by Suppressing MMP-1 Transcription in Human Skin Fibroblasts. International Journal of Molecular Sciences, 2019, 20, 2734.	4.1	23
21	Growth Inhibition and Induction of G1 Phase Cell Cycle Arrest in Human Lung Cancer Cells by a Phenylbutenoid Dimer Isolated from Zingiber cassumunar. Biological and Pharmaceutical Bulletin, 2007, 30, 1561-1564.	1.4	22
22	A metabolomic approach to determine the geographical origins of Anemarrhena asphodeloides by using UPLC–QTOF MS. Journal of Pharmaceutical and Biomedical Analysis, 2014, 92, 47-52.	2.8	22
23	7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z Notonipetranone Attenuates Neuropathic Pain by Suppressing Oxidative Stress, Inflammatory and Pro-Apoptotic Protein Expressions. Molecules, 2021, 26, 181.	3.8	22
24	Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling. FASEB Journal, 2019, 33, 2026-2036.	0.5	21
25	Chalcones from <i>Angelica keiskei</i> : Evaluation of Their Heat Shock Protein Inducing Activities. Journal of Natural Products, 2015, 78, 2481-2487.	3.0	20
26	Chemical constituents isolated from the Mongolian medicinal plant Sophora alopecuroides L. and their inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3314-3318.	2.2	19
27	Chemical Constituents of the Leaves of Brassica oleracea var. acephala. Chemistry of Natural Compounds, 2018, 54, 1023-1026.	0.8	19
28	Dehydrocostus lactone suppresses osteoclast differentiation by regulating NFATc1 and inhibits osteoclast activation through modulating migration and lysosome function. FASEB Journal, 2019, 33, 9685-9694.	0.5	19
29	A New 9,10-Dihydrophenanthrene and Cell Proliferative 3,4-δ-Dehydrotocopherols from Stemona tuberosa. Molecules, 2015, 20, 5965-5974.	3.8	18
30	Small molecule activator of Nm23/NDPK as an inhibitor of metastasis. Scientific Reports, 2018, 8, 10909.	3.3	16
31	Phytochemicals and Bioactivities of Zingiber cassumunar Roxb. Molecules, 2021, 26, 2377.	3.8	16
32	Identification of cytoprotective constituents of the flower buds of Tussilago farfara against glucose oxidase-induced oxidative stress in mouse fibroblast NIH3T3 cells and human keratinocyte HaCaT cells. Archives of Pharmacal Research, 2016, 39, 474-480.	6.3	15
33	Triterpenoids from the Leaves of <i>Centella asiatica</i> Inhibit Ionizing Radiation-Induced Migration and Invasion of Human Lung Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-7.	1.2	15
34	The quinone-based derivative, HMNQ induces apoptotic and autophagic cell death by modulating reactive oxygen species in cancer cells. Oncotarget, 2017, 8, 99637-99648.	1.8	15
35	Potent modulation of Pâ€glycoprotein activity by naturally occurring phenylbutenoids from <i>Zingiber cassumunar</i> . Phytotherapy Research, 2009, 23, 472-476.	5.8	14
36	New Pyrrole Alkaloids with BulkyN-Alkyl Side Chains Containing Stereogenic Centers fromLycium chinense. Helvetica Chimica Acta, 2013, 96, 1482-1487.	1.6	14

#	Article	IF	CITATIONS
37	Identification of new pyrrole alkaloids from the fruits of Lycium chinense. Archives of Pharmacal Research, 2016, 39, 321-327.	6.3	14
38	Tussilagonone-induced Nrf2 pathway activation protects HepG2 cells from oxidative injury. Food and Chemical Toxicology, 2017, 108, 120-127.	3.6	14
39	Furanocoumarins from the Roots of <i>Angelica dahurica</i> with Inhibitory Activity against Intracellular Reactive Oxygen Species Accumulation. Journal of Natural Products, 2019, 82, 2601-2607.	3.0	14
40	lcariin attenuates cyclophosphamide-induced cystitis via down-regulation of NF-DºB and up-regulation of Nrf-2/HO-1 signaling pathways in mice model. International Immunopharmacology, 2022, 106, 108604.	3.8	14
41	A Validated LC Method for Simultaneous Determination of Phenolic, Coumarin and Phthalide Compounds in the Ethanolic Extract of Angelica tenuissima. Chromatographia, 2009, 70, 1079-1085.	1.3	13
42	Two New Phenolic Compounds from the Rhizomes of <i>Gastrodia elata</i> <scp>Blume</scp> . Helvetica Chimica Acta, 2011, 94, 1310-1314.	1.6	13
43	Identification of Three New Flavonoids from the Peels of Citrus unshiu. Helvetica Chimica Acta, 2012, 95, 240-245.	1.6	13
44	Quantitative analysis of betaine in Lycii Fructus by HILIC-ELSD. Archives of Pharmacal Research, 2013, 36, 1231-1237.	6.3	13
45	N-Acetyldopamine derivatives from Periostracum Cicadae and their regulatory activities on Th1 and Th17 cell differentiation. Bioorganic Chemistry, 2020, 102, 104095.	4.1	13
46	Eudesmane and Eremophilane Sesquiterpenes from the Fruits of Alpinia oxyphylla with Protective Effects against Oxidative Stress in Adipose-Derived Mesenchymal Stem Cells. Molecules, 2021, 26, 1762.	3.8	13
47	A new secoiridoid glycoside from the fruits of <i>Cornus officinalis</i> (Cornaceae). Natural Product Research, 2016, 30, 1504-1510.	1.8	12
48	Cytotoxic Compounds from Juglans sinensis Dode Display Anti-Proliferative Activity by Inducing Apoptosis in Human Cancer Cells. Molecules, 2016, 21, 120.	3.8	11
49	Two new naphthalenic lactone glycosides from Cassia obtusifolia L. seeds. Archives of Pharmacal Research, 2018, 41, 737-742.	6.3	11
50	Anti-allergic activities of Umbelliferone against histamine- and Picryl chloride-induced ear edema by targeting Nrf2/iNOS signaling in mice. BMC Complementary Medicine and Therapies, 2021, 21, 215.	2.7	11
51	(E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-ol Enhances Melanogenesis through Increasing Upstream Stimulating Factor-1-Mediated Tyrosinase Expression. PLoS ONE, 2015, 10, e0141988.	2.5	10
52	4-Hydroxybenzyl methyl ether improves learning and memory in mice via the activation of dopamine D1 receptor signaling. Neurobiology of Learning and Memory, 2015, 121, 30-38.	1.9	10
53	Cytoprotective dihydronaphthalenones from the wood of Catalpa ovata. Phytochemistry, 2018, 147, 14-20.	2.9	10
54	Plants as Sources of Drugs. ACS Symposium Series, 1996, , 179-193.	0.5	9

#	Article	IF	CITATIONS
55	In Vitro and in Vivo Evaluation of Phenylbutenoid Dimers as Inhibitors of P-Glycoprotein. Journal of Natural Products, 2013, 76, 2277-2281.	3.0	9
56	Pharmacological mechanism of xanthoangelol underlying Nrf-2/TRPV1 and anti-apoptotic pathway against scopolamine-induced amnesia in mice. Biomedicine and Pharmacotherapy, 2022, 150, 113073.	5.6	9
57	Synthesis and Biological Activity of Optically Active Phenylbutenoid Dimers. Journal of Natural Products, 2011, 74, 1817-1821.	3.0	8
58	Isolation of a new phenylpropanoid fromCodonopsis ussuriensis. Archives of Pharmacal Research, 1990, 13, 365-366.	6.3	7
59	Simultaneous quantitation and validation of method for the quality evaluation of Eucommiae cortex by HPLC/UV. Archives of Pharmacal Research, 2015, 38, 2183-2192.	6.3	7
60	Chemical Constituents of Physalis alkekengi var. franchetii. Chemistry of Natural Compounds, 2015, 51, 1160-1161.	0.8	7
61	Anti-Inflammatory Effects of Catalpalactone Isolated from Catalpa ovata in LPS-Induced RAW264.7 Cells. Molecules, 2019, 24, 1236.	3.8	7
62	Identification of Six New Minor Diarylheptanoids from the Seeds of <i>Alpinia katsumadai</i> . Helvetica Chimica Acta, 2013, 96, 1670-1680.	1.6	6
63	Constituents of the leaves and twigs of Elaeagnus umbellata and their proliferative effects on human keratinocyte HaCaT cells. F¬toterap¬¢, 2019, 139, 104374.	2.2	6
64	Comprehensive in vivo and in silico approaches to explore the hepatoprotective activity of poncirin against paracetamol toxicity. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 195-215.	3.0	6
65	Utilization of circular dichroism experiment to distinguish acanthoside D and eleutheroside E. Archives of Pharmacal Research, 2015, 38, 1921-1925.	6.3	5
66	Discrimination of Lycium chinense and L. barbarum Based on Metabolite Analysis and Hepatoprotective Activity. Molecules, 2020, 25, 5835.	3.8	5
67	Chemical Constituents of the Radices of Angelica tenuissima. Chemistry of Natural Compounds, 2014, 50, 529-530.	0.8	4
68	A New Naphthalenic Lactone Glycoside from the Seeds of Cassia obtusifolia. Chemistry of Natural Compounds, 2017, 53, 429-431.	0.8	4
69	Phytochemical Study of the Low Polar Constituents of Pinellia ternata. Chemistry of Natural Compounds, 2017, 53, 1152-1153.	0.8	4
70	Allergic Inflammation Caused by Dimerized Translationally Controlled Tumor Protein is Attenuated by Cardamonin. Frontiers in Pharmacology, 2021, 12, 765521.	3.5	4
71	Three New Chalcones from the Aerial Parts of <i>Angelica keiskei</i> . Helvetica Chimica Acta, 2016, 99, 393-397.	1.6	3
72	Chemical Constituents of the Leaves of Vitis labruscana cv. Steuben. Chemistry of Natural Compounds, 2017, 53, 958-960.	0.8	3

#	Article	IF	CITATIONS
73	Isoquinoline Alkaloids from Corydalis pallida. Chemistry of Natural Compounds, 2018, 54, 1020-1022.	0.8	3
74	Inhibitory Effects of Furanocoumarins From the Roots of <i>Angelica dahurica</i> on Ionizing Radiation-Induced Migration of A549 Human Non-Small Cell Lung Cancer Cells. Natural Product Communications, 2020, 15, 1934578X2091503.	0.5	3
75	Sesquiterpenoids from Curcuma phaeocaulis. Chemistry of Natural Compounds, 2014, 50, 552-553.	0.8	2
76	Identification of Phytochemicals From the Caulis of Lonicera japonica. Chemistry of Natural Compounds, 2016, 52, 918-919.	0.8	2
77	Minor phenolics from Angelica keiskei and their proliferative effects on Hep3B cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3065-3070.	2.2	2
78	Anti-Inflammatory Effect of Three Isolated Compounds of Physalis alkekengi var. franchetii (PAF) in Lipopolysaccharide-Activated RAW 264.7 Cells. Current Issues in Molecular Biology, 2022, 44, 1407-1416.	2.4	2
79	Identification of Two New Lactams from the Hulled Seeds of <i>Coix lachrymaâ€jobi</i> var. <i>maâ€yuen</i> . Bulletin of the Korean Chemical Society, 2015, 36, 2401-2403.	1.9	1
80	Constituents of the Leaves of <i>Verbascum blattaria</i> . Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	1
81	Oligostilbenoids from Vitis vinifera cv. Muscat of Alexandria. Chemistry of Natural Compounds, 2015, 51, 937-938.	0.8	1