
Seungon Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3329103/publications.pdf Version: 2024-02-01

SEUNCON LUNC

#	Article	IF	CITATIONS
1	Solutionâ€Processed Molybdenum Oxide with Hydroxyl Radicalâ€Induced Oxygen Vacancy as an Efficient and Stable Interfacial Layer for Organic Solar Cells. Solar Rrl, 2020, 4, 1900420.	5.8	17
2	Suppressed Interdiffusion and Degradation in Flexible and Transparent Metal Electrode-Based Perovskite Solar Cells with a Graphene Interlayer. Nano Letters, 2020, 20, 3718-3727.	9.1	65
3	Enhanced Charge Transport via Metallic 1T Phase Transition Metal Dichalcogenidesâ€Mediated Hole Transport Layer Engineering for Perovskite Solar Cells. ChemNanoMat, 2019, 5, 1050-1058.	2.8	16
4	Size Fractionation of Graphene Oxide via Solventâ€Mediated Consecutive Charge Manipulation and Investigation of the Size Effect as Hole Transporting Layer in Perovskite Solar Cells. ChemNanoMat, 2019, 5, 776-783.	2.8	7
5	Development of Annealing-Free, Solution-Processable Inverted Organic Solar Cells with N-Doped Graphene Electrodes using Zinc Oxide Nanoparticles. Nano Letters, 2018, 18, 1337-1343.	9.1	81
6	A highly robust and stable graphene-encapsulated Cu-grid hybrid transparent electrode demonstrating superior performance in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 24805-24813.	10.3	21
7	Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance. Nature Communications, 2018, 9, 1867.	12.8	60
8	Nafion-Mediated Liquid-Phase Exfoliation of Transition Metal Dichalcogenides and Direct Application in Hydrogen Evolution Reaction. Chemistry of Materials, 2018, 30, 4658-4666.	6.7	30
9	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie, 2018, 130, 13461-13466.	2.0	108
10	Highly Flexible and Efficient Allâ€Polymer Solar Cells with Highâ€Viscosity Processing Polymer Additive toward Potential of Stretchable Devices. Angewandte Chemie - International Edition, 2018, 57, 13277-13282.	13.8	166
11	Toward Green Synthesis of Graphene Oxide Using Recycled Sulfuric Acid via Couette–Taylor Flow. ACS Omega, 2017, 2, 186-192.	3.5	17
12	Locking-In Optimal Nanoscale Structure Induced by Naphthalenediimide-Based Polymeric Additive Enables Efficient and Stable Inverted Polymer Solar Cells. ACS Nano, 2017, 11, 7409-7415.	14.6	34
13	The effect of the graphene integration process on the performance of graphene-based Schottky junction solar cells. Journal of Materials Chemistry A, 2017, 5, 18716-18724.	10.3	13
14	Flexible Indium–Tin Oxide Crystal on Plastic Substrates Supported by Graphene Monolayer. Scientific Reports, 2017, 7, 3131.	3.3	24
15	The use of an n-type macromolecular additive as a simple yet effective tool for improving and stabilizing the performance of organic solar cells. Energy and Environmental Science, 2016, 9, 3464-3471.	30.8	99