Xiang Peng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/332909/xiang-peng-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 3,625 35 59 h-index g-index citations papers 8.8 69 4,356 5.42 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
68	Se-NiSe2 hybrid nanosheet arrays with self-regulated elemental Se for efficient alkaline water splitting. <i>Journal of Materials Science and Technology</i> , 2022 , 118, 136-143	9.1	2
67	Suppressing photoinduced charge recombination at the BiVO NiOOH junction by sandwiching an oxygen vacancy layer for efficient photoelectrochemical water oxidation. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 1116-1125	9.3	3
66	Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting. <i>Journal of Catalysis</i> , 2021 , 398, 54-66	7.3	12
65	Non-conjugated diketone as a linkage for enhancing the rate performance of poly(perylenediimides). <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19283-19289	13	9
64	Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. <i>Nano Energy</i> , 2020 , 78, 105234	17.1	81
63	Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 366-381	5.8	154
62	Spatially controlled synthesis of superlattice-like SnS/nitrogen-doped graphene hybrid nanobelts as high-rate and durable anode materials for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 27475-27483	13	21
61	Molybdenum diselenide [black phosphorus heterostructures for electrocatalytic hydrogen evolution. <i>Applied Surface Science</i> , 2019 , 467-468, 328-334	6.7	34
60	Low Work Function Surface Modifiers for Solution-Processed Electronics: A Review. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701404	4.6	35
59	Battery Binders: Highly Stretchable Conductive Glue for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries (Adv. Funct. Mater. 3/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870016	15.6	3
58	Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702314	21.8	180
57	Electrocatalysts: In Situ Synthesis of MoP Nanoflakes Intercalated N-Doped Graphene Nanobelts from MoO3Amine Hybrid for High-Efficient Hydrogen Evolution Reaction (Small 25/2018). <i>Small</i> , 2018 , 14, 1870115	11	4
56	Tantalum nitride films for corrosion protection of biomedical Mg-Y-RE alloy. <i>Journal of Alloys and Compounds</i> , 2018 , 764, 947-958	5.7	14
55	In Situ Synthesis of MoP Nanoflakes Intercalated N-Doped Graphene Nanobelts from MoO -Amine Hybrid for High-Efficient Hydrogen Evolution Reaction. <i>Small</i> , 2018 , 14, e1800667	11	66
54	Ni-doped amorphous iron phosphide nanoparticles on TiN nanowire arrays: An advanced alkaline hydrogen evolution electrocatalyst. <i>Nano Energy</i> , 2018 , 53, 66-73	17.1	72
53	Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. <i>Nano Energy</i> , 2018 , 52, 360-368	17.1	88
52	Spatially confined synthesis of vanadium nitride nanodots intercalated carbon nanosheets with ultrahigh volumetric capacitance and long life for flexible supercapacitors. <i>Nano Energy</i> , 2018 , 51, 128-	136.1	64

(2016-2018)

51	Highly Stretchable Conductive Glue for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1704858	15.6	90
50	Nitrogen Doped Carbon Nanosheets Encapsulated Generated Sulfur Enable High Capacity and Superior Rate Cathode for Li-S Batteries. <i>Frontiers in Chemistry</i> , 2018 , 6, 429	5	12
49	An antibacterial platform based on capacitive carbon-doped TiO nanotubes after direct or alternating currentIcharging. <i>Nature Communications</i> , 2018 , 9, 2055	17.4	99
48	Hierarchical Porous Carbon Materials Derived from Self-Template Bamboo Leaves for LithiumBulfur Batteries. <i>Electrochimica Acta</i> , 2017 , 229, 352-360	6.7	44
47	Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. <i>Nano Energy</i> , 2017 , 34, 515-523	17.1	49
46	Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. <i>Biomaterials</i> , 2017 , 124, 25-34	15.6	152
45	Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes. <i>Journal of Power Sources</i> , 2017 , 345, 227-236	8.9	78
44	In situ segregation of cobalt nanoparticles on VN nanosheets via nitriding of Co2V2O7 nanosheets as efficient oxygen evolution reaction electrocatalysts. <i>Nano Energy</i> , 2017 , 34, 1-7	17.1	81
43	In situ fabrication of Ni nanoparticles on N-doped TiO nanowire arrays by nitridation of NiTiO for highly sensitive and enzyme-free glucose sensing. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 1779-1786	7-3	15
42	Long-term antibacterial characteristics and cytocompatibility of titania nanotubes loaded with Au nanoparticles without photocatalytic effects. <i>Applied Surface Science</i> , 2017 , 414, 230-237	6.7	19
41	Elucidating the Intercalation Pseudocapacitance Mechanism of MoS-Carbon Monolayer Interoverlapped Superstructure: Toward High-Performance Sodium-Ion-Based Hybrid Supercapacitor. ACS Applied Materials & Supercapacitor. ACS Applied Materials & Supercapacitor. ACS Applied Materials & Supercapacitor.	9.5	118
40	Freestanding Nanoengineered [001] Preferentially Oriented TiO2 Nanosheets@raphene Planarly Aligned Nanohybrids with Enhanced Li-Storage Properties. <i>ChemElectroChem</i> , 2017 , 4, 2819-2825	4.3	8
39	Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy. <i>Corrosion Science</i> , 2017 , 114, 45-56	6.8	75
38	Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discourse Materials</i> , 23784-92	9.5	78
37	Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. <i>Journal of Power Sources</i> , 2016 , 328, 599-606	8.9	86
36	Three-dimensional flexible carbon electrode for symmetrical supercapacitors. <i>Materials Letters</i> , 2016 , 185, 193-196	3.3	10
35	Extracellular Electron Transfer from Aerobic Bacteria to Au-Loaded TiO2 Semiconductor without Light: A New Bacteria-Killing Mechanism Other than Localized Surface Plasmon Resonance or Microbial Fuel Cells. <i>ACS Applied Materials & Emp; Interfaces</i> , 2016 , 8, 24509-16	9.5	45
34	Peapod-like V2O3 nanorods encapsulated into carbon as binder-free and flexible electrodes in lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 331, 58-66	8.9	73

33	General fabrication of mesoporous Nb2O5 nanobelts for lithium ion battery anodes. <i>RSC Advances</i> , 2016 , 6, 90489-90493	3.7	28
32	Self-Supporting and Binder-Free Anode Film Composed of Beaded Stream-Like Li4Ti5O12 Nanoparticles for High-Performance Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2016 , 3, 1301-1305	4.3	17
31	Large-Scale Synthesis and Mechanism of EsiC Nanoparticles from Rice Husks by Low-Temperature Magnesiothermic Reduction. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6600-6607	8.3	43
30	Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: A high-efficiency electrocatalyst for hydrogen evolution reaction. <i>Nano Energy</i> , 2016 , 26, 603-609	17.1	92
29	Low-Temperature Synthesis of Mesoporous SiC Hollow Spheres by Magnesiothermic Reduction. Journal of the American Ceramic Society, 2016 , 99, 1859-1861	3.8	13
28	Hydrogenated V2O5 Nanosheets for Superior Lithium Storage Properties. <i>Advanced Functional Materials</i> , 2016 , 26, 784-791	15.6	110
27	Three-Dimensional Activated Carbon Recycled from Rotten Potatoes for High-performance Supercapacitors. <i>Waste and Biomass Valorization</i> , 2016 , 7, 551-557	3.2	25
26	Enhanced corrosion resistance and biocompatibilty of PMMA-coated ZK60 magnesium alloy. <i>Materials Letters</i> , 2016 , 173, 178-181	3.3	15
25	Large and porous carbon sheets derived from water hyacinth for high-performance supercapacitors. <i>RSC Advances</i> , 2016 , 6, 29996-30003	3.7	35
24	Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 324, 233-238	8.9	87
23	Hafnium-implanted WE43 magnesium alloy for enhanced corrosion protection and biocompatibility. <i>Surface and Coatings Technology</i> , 2016 , 306, 11-15	4.4	16
22	In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing. <i>Sensors and Actuators B: Chemical</i> , 2016 , 232, 150-157	8.5	65
21	Crumpled N-doped carbon nanotubes encapsulated with peapod-like Ge nanoparticles for high-rate and long-life Li-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7585-7590	13	39
20	Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties. <i>Applied Surface Science</i> , 2016 , 383, 57-63	6.7	45
19	Dominant Factors Governing the Electron Transfer Kinetics and Electrochemical Biosensing Properties of Carbon Nanofiber Arrays. <i>ACS Applied Materials & District Amplied Materials & District</i>	9.5	14
18	Lithiation Kinetics in High-Performance Porous Vanadium Nitride Nanosheet Anode. <i>Electrochimica Acta</i> , 2016 , 214, 201-207	6.7	25
17	Supercapacitor Electrodes Based on Hierarchical Mesoporous MnOx/Nitrided TiO2 Nanorod Arrays on Carbon Fiber Paper. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1400446	4.6	21
16	Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium lelenium battery cathode. <i>Journal of Power Sources</i> , 2015 , 288, 214-220	8.9	70

LIST OF PUBLICATIONS

15	Porous Dual-Layered MoOx Nanotube Arrays with Highly Conductive TiN Cores for Supercapacitors. <i>ChemElectroChem</i> , 2015 , 2, 512-517	4.3	22
14	Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion. <i>Scientific Reports</i> , 2015 , 5, 17399	4.9	48
13	Nitrogen-Doped Carbon Encapsulated Mesoporous Vanadium Nitride Nanowires as Self-Supported Electrodes for Flexible All-Solid-State Supercapacitors. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500211	4.6	84
12	Fabrication of PANI/C-TiO2Composite Nanotube Arrays Electrode for Supercapacitor. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-7	3.2	5
11	Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo2N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14617-14624	13	66
10	Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. <i>Nanoscale</i> , 2015 , 7, 13840-7	7.7	93
9	Robust electrodes based on coaxial TiC/C-MnO2 core/shell nanofiber arrays with excellent cycling stability for high-performance supercapacitors. <i>Small</i> , 2015 , 11, 1847-56	11	15
8	Nanoporous Activated Carbon Derived from Rice Husk for High Performance Supercapacitor. Journal of Nanomaterials, 2014 , 2014, 1-7	3.2	22
7	Rice Husk-Derived Activated Carbon for Li Ion Battery Anode. <i>Nanoscience and Nanotechnology Letters</i> , 2014 , 6, 68-71	0.8	24
6	Coaxial PANI/TiN/PANI nanotube arrays for high-performance supercapacitor electrodes. <i>Chemical Communications</i> , 2013 , 49, 10172-4	5.8	7 ²
5	Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. <i>Advanced Materials</i> , 2013 , 25, 5091-7	24	369
4	Non-enzymatic hydrogen peroxide photoelectrochemical sensor based on WO3 decorated coreEhell TiC/C nanofibers electrode. <i>Electrochimica Acta</i> , 2013 , 108, 491-496	6.7	42
3	WO3 nanoparticles decorated core-shell TiC-C nanofiber arrays for high sensitive and non-enzymatic photoelectrochemical biosensing. <i>Chemical Communications</i> , 2013 , 49, 7091-3	5.8	18
2	Carbon-Doped TiO2 Nanotube Array Platform for Visible Photocatalysis. <i>Nanoscience and Nanotechnology Letters</i> , 2013 , 5, 1251-1257	0.8	8
1	Titanium Dioxide Nanotube Arrays for Sensitive and Reliable Photoelectrochemical Sensors. Nanoscience and Nanotechnology Letters, 2013, 5, 1002-1006	0.8	2