Matthieu Becuwe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3328991/publications.pdf

Version: 2024-02-01

414414 430874 1,122 46 18 32 citations h-index g-index papers 46 46 46 1432 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimentally Validated Threeâ€Dimensional Modeling of Organicâ€Based Sodiumâ€Ion Battery Electrode Manufacturing. Batteries and Supercaps, 2022, 5, .	4.7	11
2	Surface modification of LiFePO4 nanoparticles through an organic/inorganic hybrid approach and its impact on electrochemical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128952.	4.7	2
3	Fundamental insight into the interaction between a lithium salt and an inorganic filler for ion mobility using a synergic theoretical-experimental approach. Journal of Colloid and Interface Science, 2022, 625, 734-742.	9.4	3
4	Optimization of Disodium Naphthalene Dicarboxylates Negative Electrode for Organic-Inorganic Hybrid Sodium Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 94-94.	0.0	0
5	A perspective on organic electrode materials and technologies for next generation batteries. Journal of Power Sources, 2021, 482, 228814.	7.8	140
6	Mechanistic Understanding of the Interactions and Pseudocapacitance of Multiâ€Electron Redox Organic Molecules Sandwiched between MXene Layers. Advanced Electronic Materials, 2021, 7, 2001202.	5.1	10
7	Hybrid Electrolytes Based on Optimized Ionic Liquid Quantity Tethered on ZrO ₂ Nanoparticles for Solid-State Lithium-Ion Conduction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15159-15167.	8.0	6
8	Organic Negative Electrode Materials for Metalâ€ion and Molecularâ€ion Batteries: Progress and Challenges from a Molecular Engineering Perspective. Advanced Energy Materials, 2021, 11, 2101562.	19.5	44
9	New Carbazole-Based Organic Electrodes for Next Generation of Sustainable Lithium Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 347-347.	0.0	0
10	Charge transport in phenazine-fused triphenylene discotic mesogens doped with CdS nanowires. New Journal of Chemistry, 2020, 44, 14872-14878.	2.8	10
11	Multi-electron redox asymmetric supercapacitors based on quinone-coupled viologen derivatives and Ti3C2Tx MXene. Materials Today Energy, 2020, 18, 100532.	4.7	27
12	Reversible Anion Insertion in Molecular Phenothiazineâ€Based Redoxâ€Active Positive Material for Organic Ion Batteries. ChemSusChem, 2020, 13, 2364-2370.	6.8	23
13	Phenothiazine–MXene Aqueous Asymmetric Pseudocapacitors. ACS Applied Energy Materials, 2020, 3, 3144-3149.	5.1	40
14	Empowering organicâ€based negative electrode material based on conjugated lithium carboxylate through molecular design. ChemSusChem, 2020, 13, 2321-2327.	6.8	7
15	Electrochemical polymerization of chloride doped PEDOT hierarchical porous nanostructure on graphite as a potential electrode for high performance supercapacitor. Electrochimica Acta, 2020, 354, 136669.	5. 2	37
16	(Invited) Contribution of Organic Molecular Compounds to Electrochemical Energy Storage. ECS Meeting Abstracts, 2020, MA2020-02, 344-344.	0.0	0
17	Mesoscale Texturation of Organic-Based Negative Electrode Material through in Situ Proton Reduction of Conjugated Carboxylic Acid. Chemistry of Materials, 2019, 31, 6224-6230.	6.7	11
18	Nitroxide-Grafted Nanometric Metal Oxides for the Catalytic Oxidation of Sugar. ACS Applied Nano Materials, 2019, 2, 5200-5205.	5.0	3

#	Article	IF	CITATIONS
19	First Sustainable Aziridination of Olefins Using Recyclable Copper-Immobilized Magnetic Nanoparticles. Synlett, 2019, 30, 563-566.	1.8	10
20	Nitroxide supported on nanometric metal oxides as new hybrid catalysts for selective sugar oxidation. Journal of Colloid and Interface Science, 2019, 536, 526-535.	9.4	4
21	Gold Catalysis and Photoactivation: A Fast and Selective Procedure for the Oxidation of Free Sugars. ACS Catalysis, 2018, 8, 1635-1639.	11.2	26
22	An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone for organic Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 19182-19189.	10.3	57
23	Substituent effect on redox potential of terephthalate-based electrode materials for lithium batteries. Electrochemistry Communications, 2018, 93, 71-75.	4.7	21
24	Decreasing redox voltage of terephthalate-based electrode material for Li-ion battery using substituent effect. Journal of Power Sources, 2017, 359, 198-204.	7.8	36
25	2D-Layered Lithium Carboxylate Based on Biphenyl Core as Negative Electrode for Organic Lithium-Ion Batteries. Chemistry of Materials, 2017, 29, 546-554.	6.7	41
26	Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene. Energy and Environmental Science, 2016, 9, 2586-2594.	30.8	129
27	Improvement of Gold-Catalyzed Oxidation of Free Carbohydrates to Corresponding Aldonates Using Microwaves. ACS Sustainable Chemistry and Engineering, 2016, 4, 2432-2438.	6.7	33
28	Immobilization of fluorescent chemosensor on pyrogenic silica: A promising device for gaseous detection. Journal of Colloid and Interface Science, 2015, 450, 62-67.	9.4	5
29	SiO ₂ /lonic Liquid Hybrid Nanoparticles for Solid-State Lithium Ion Conduction. Chemistry of Materials, 2015, 27, 7926-7933.	6.7	30
30	Poly[\hat{l} /46-(naphthalene-2,6-dicarboxylato)-bis(aqualithium)]. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m288-m288.	0.2	0
31	Hyper-conjugated lithium carboxylate based on a perylene unit for high-rate organic lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18225-18228.	10.3	69
32	Lithium Insertion / De-Insertion Properties of π-Extended Naphthyl-Based Dicarboxylate Electrode Synthesized by Freeze-Drying. Journal of the Electrochemical Society, 2014, 161, A46-A52.	2.9	74
33	Turn-on/turn-off fluorescent hybrid silica nanoparticles. A new promising material for selective anions' sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 88-94.	4.7	10
34	Calix[4]arene-modified silica nanoparticles for the potentiometric detection of iron (III) in aqueous solution. Comptes Rendus Chimie, 2012, 15, 290-297.	0.5	6
35	A new sensitive organic/inorganic hybrid material based on titanium oxide for the potentiometric detection of iron(III). Journal of Colloid and Interface Science, 2012, 388, 130-136.	9.4	13
36	New fluorescent and electropolymerizable N-azacrown carbazole as a selective probe for iron (III) in aqueous media. Sensors and Actuators B: Chemical, 2012, 171-172, 1022-1028.	7.8	35

#	Article	IF	CITATIONS
37	Excited state proton transfer assisted fluorescence resonance energy transfer in an inclusion complex of a l²-CD derivative. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 238, 29-34.	3.9	3
38	Efficient synthesis of amino-protected calix[4] arenes selectively functionalized with iron chelator ICL670 designed as platform for iron recognition. Tetrahedron, 2011, 67, 2916-2924.	1.9	7
39	Internal structure investigation of pyrogenic modified silica by fluorescent labeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 248-253.	4.7	3
40	Spectroscopic investigation of the three prototropic forms of a \hat{l}^2 -cyclodextrin-indolizine derivative from its inclusion-cum-charge-transfer complexes. Chemical Physics Letters, 2011, 504, 100-106.	2.6	3
41	Rapid synthesis of a versatile organic/inorganic hybrid material based on pyrogenic silica. Journal of Colloid and Interface Science, 2010, 350, 83-89.	9.4	5
42	Fluorescent Indolizine-b-Cyclodextrin Derivatives for the Detection of Volatile Organic Compounds. Sensors, 2008, 8, 3689-3705.	3.8	49
43	Tuneable fluorescent marker appended to \hat{l}^2 -cyclodextrin: a pH-driven molecular switch. Tetrahedron Letters, 2007, 48, 6186-6188.	1.4	18
44	Photochemical behaviour upon the inclusion for some volatile organic compounds in new fluorescent indolizine \hat{l}^2 -cyclodextrin sensors. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 312-320.	3.9	51
45	SYNTHESIS OF NEW FLUORESCENT Î ² -CYCLODEXTRIN SENSOR. Heterocyclic Communications, 2005, 11, .	1.2	7
46	Relating Electrochemistry of New Organic Materials for Batteries and Fundamental Understanding through DFT Calculations. Advances in Science and Technology, 0, , .	0.2	3