
David Püschel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3328960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drought rearranges preferential carbon allocation to arbuscular mycorrhizal community members co-inhabiting roots of Medicago truncatula. Environmental and Experimental Botany, 2022, 199, 104897.	4.2	8
2	Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biology and Biochemistry, 2021, 157, 108243.	8.8	54
3	Arbuscular mycorrhiza, but not hydrogel, alleviates drought stress of ornamental plants in peat-based substrate. Applied Soil Ecology, 2020, 146, 103394.	4.3	22
4	Root growth and presence of Rhizophagus irregularis distinctly alter substrate hydraulic properties in a model system with Medicago truncatula. Plant and Soil, 2020, 457, 131-151.	3.7	14
5	Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza, 2020, 30, 299-313.	2.8	65
6	Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions. Chemical and Biological Technologies in Agriculture, 2019, 6, .	4.6	67
7	Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere, 2019, 10, e02736.	2.2	9
8	Survival and long-term infectivity of arbuscular mycorrhizal fungi in peat-based substrates stored under different temperature regimes. Applied Soil Ecology, 2019, 140, 98-107.	4.3	3
9	Abiotic contexts consistently influence mycorrhiza functioning independently of the composition of synthetic arbuscular mycorrhizal fungal communities. Mycorrhiza, 2019, 29, 127-139.	2.8	16
10	Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4 Panicum grasses. Plant and Soil, 2018, 425, 441-456.	3.7	34
11	Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers?. Mycorrhiza, 2018, 28, 269-283.	2.8	82
12	Soil Matrix Determines the Outcome of Interaction Between Mycorrhizal Symbiosis and Biochar for Andropogon gerardii Growth and Nutrition. Frontiers in Microbiology, 2018, 9, 2862.	3.5	16
13	Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers?. Mycorrhiza, 2018, 28, 465-465.	2.8	22
14	Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza, 2018, 28, 435-450.	2.8	30
15	Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes. Frontiers in Plant Science, 2018, 9, 449.	3.6	15
16	Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses—A case of dysfunctional symbiosis. Pedobiologia, 2017, 62, 48-55.	1.2	12
17	Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference?. Mycorrhiza, 2017, 27, 577-585.	2.8	36
18	Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. Mycorrhiza, 2017, 27, 35-51.	2.8	30

DAVID PÃ¹/4SCHEL

#	Article	IF	CITATIONS
19	Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant and Soil, 2017, 419, 319-333.	3.7	77
20	Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession. Mycorrhiza, 2017, 27, 775-789.	2.8	18
21	Arbuscular Mycorrhiza Stimulates Biological Nitrogen Fixation in Two Medicago spp. through Improved Phosphorus Acquisition. Frontiers in Plant Science, 2017, 8, 390.	3.6	100
22	Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil. Frontiers in Microbiology, 2017, 8, 719.	3.5	71
23	Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants. PLoS ONE, 2017, 12, e0181525.	2.5	31
24	Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers. Frontiers in Microbiology, 2016, 7, 711.	3.5	42
25	Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of <i>Andropogon gerardii</i> under limited nitrogen supply. Ecology and Evolution, 2016, 6, 4332-4346.	1.9	124
26	Can inoculation with living soil standardize microbial communities in soilless potting substrates?. Applied Soil Ecology, 2016, 108, 278-287.	4.3	5
27	Nutrient limitation drives response of Calamagrostis epigejos to arbuscular mycorrhiza in primary succession. Mycorrhiza, 2016, 26, 757-767.	2.8	16
28	Forest reclamation of fly ash deposit: a field study on appraisal of mycorrhizal inoculation. Restoration Ecology, 2016, 24, 184-193.	2.9	15
29	Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza, 2016, 26, 123-131.	2.8	31
30	Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?. Mycorrhiza, 2015, 25, 205-214.	2.8	15
31	Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Frontiers in Plant Science, 2015, 6, 65.	3.6	46
32	Can mycorrhizal inoculation stimulate the growth and flowering of peat-grown ornamental plants under standard or reduced watering?. Applied Soil Ecology, 2014, 80, 93-99.	4.3	17
33	Interaction of arbuscular mycorrhizal fungi and rhizobia: Effects on flax yield in spoilâ€bank clay. Journal of Plant Nutrition and Soil Science, 2011, 174, 128-134.	1.9	24
34	The potential of mycorrhizal inoculation and organic amendment to increase yields of <i>Galega orientalis</i> and <i>Helianthus tuberosus</i> in a spoilâ€bank substrate. Journal of Plant Nutrition and Soil Science, 2011, 174, 664-672.	1.9	19
35	Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza, 2011, 21, 641-650.	2.8	34
36	Does the sequence of plant dominants affect mycorrhiza development in simulated succession on spoil banks?. Plant and Soil, 2008, 302, 273-282.	3.7	22

David Püschel

#	Article	IF	CITATIONS
37	Cultivation of high-biomass crops on coal mine spoil banks: Can microbial inoculation compensate for high doses of organic matter?. Bioresource Technology, 2008, 99, 6391-6399.	9.6	47
38	Cultivation of flax in spoil-bank clay: Mycorrhizal inoculationvs.high organic amendments. Journal of Plant Nutrition and Soil Science, 2008, 171, 872-877.	1.9	13
39	The development of arbuscular mycorrhiza in two simulated stages of spoil-bank succession. Applied Soil Ecology, 2007, 35, 363-369.	4.3	23
40	Mycorrhiza influences plant community structure in succession on spoil banks. Basic and Applied Ecology, 2007, 8, 510-520.	2.7	40
41	Effect of inoculation with soil yeasts on mycorrhizal symbiosis of maize. Pedobiologia, 2006, 50, 341-345.	1.2	24