Fei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3328927/publications.pdf

Version: 2024-02-01

331670 434195 1,805 33 21 31 citations h-index g-index papers 33 33 33 1234 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019, 8, 576-582.	17.4	255
2	A high entropy silicide by reactive spark plasma sintering. Journal of Advanced Ceramics, 2019, 8, 148-152.	17.4	195
3	High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 2019, 39, 2989-2994.	5.7	153
4	Graphene with three-dimensional architecture for high performance supercapacitor. Carbon, 2014, 67, 221-229.	10.3	133
5	High-entropy thermal barrier coating of rare-earth zirconate: A case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying. Journal of the European Ceramic Society, 2020, 40, 5731-5739.	5.7	118
6	Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase. Journal of the European Ceramic Society, 2020, 40, 1839-1847.	5.7	107
7	Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 2020, 9, 503-510.	17.4	104
8	Sol-gel derived porous ultra-high temperature ceramics. Journal of Advanced Ceramics, 2020, 9, 1-16.	17.4	103
9	Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2–SiC particulate composites. Ceramics International, 2019, 45, 24508-24514.	4.8	68
10	High-entropy A2B2O7-type oxide ceramics: A potential immobilising matrix for high-level radioactive waste. Journal of Hazardous Materials, 2021, 415, 125596.	12.4	59
11	Preparation of zirconium carbide foam by direct foaming method. Journal of the European Ceramic Society, 2014, 34, 3513-3520.	5.7	51
12	Liquid precursor-derived high-entropy carbide nanopowders. Ceramics International, 2019, 45, 22437-22441.	4.8	51
13	Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering. Journal of the European Ceramic Society, 2020, 40, 935-941.	5.7	49
14	High-entropy carbide ceramics with refined microstructure and enhanced thermal conductivity by the addition of graphite. Journal of the European Ceramic Society, 2021, 41, 4747-4754.	5.7	45
15	Highly Dual-Heteroatom-Doped Ultrathin Carbon Nanosheets with Expanded Interlayer Distance for Efficient Energy Storage. ACS Sustainable Chemistry and Engineering, 2018, 6, 3143-3153.	6.7	38
16	High-entropy silicide ceramics developed from (TiZrNbMoW)Si2 formulation doped with aluminum. Journal of the European Ceramic Society, 2020, 40, 2752-2759.	5.7	33
17	Fabrication of zirconium carbide nanofibers by electrospinning. Ceramics International, 2014, 40, 10137-10141.	4.8	31
18	Synthesis of ZrB2 nanofibers by carbothermal reduction via electrospinning. Chemical Engineering Journal, 2013, 234, 184-188.	12.7	26

#	Article	IF	CITATIONS
19	Preparation and characterization of stoichiometric zirconium carbide foams by direct foaming of zirconia sols. Journal of Porous Materials, 2015, 22, 493-500.	2.6	22
20	Syntheses of ZrC–SiC nanopowder via sol–gel method. Ceramics International, 2016, 42, 1345-1351.	4.8	22
21	Preparation of highly porous ZrB2/ZrC/SiC composite monoliths using liquid precursors via direct drying process. Journal of the European Ceramic Society, 2018, 38, 1103-1111.	5 . 7	22
22	Synthesis of single-phase metal oxycarbonitride ceramics. Scripta Materialia, 2020, 176, 17-22.	5.2	18
23	Scalable foaming assisted synthesis of ZrC nanopowder by carbothermal reduction. Ceramics International, 2015, 41, 3335-3338.	4.8	17
24	Bottom-up synthesis of 2D layered high-entropy transition metal hydroxides. Nanoscale Advances, 2022, 4, 2468-2478.	4.6	17
25	Preparation of ZrC/SiC porous self-supporting monoliths via sol-gel process using polyethylene glycol as phase separation inducer. Journal of the European Ceramic Society, 2018, 38, 4806-4813.	5.7	16
26	In-situ synthesis of porous ZrB2/ZrC/SiC ceramics decorated with SiC whiskers. Ceramics International, 2019, 45, 9313-9315.	4.8	15
27	Enhanced Hardness in Transition-Metal Monocarbides via Optimal Occupancy of Bonding Orbitals. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14365-14376.	8.0	11
28	Graphite nanoplatelets toughened zirconium carbide ceramics prepared by spark plasma sintering. Ceramics International, 2021, 47, 8461-8467.	4.8	8
29	A thermoset hybrid sol for the syntheses of zirconium carbide–silicon carbide foam via replica method. Journal of Porous Materials, 2019, 26, 409-417.	2.6	7
30	Carbothermal conversion of selfâ€supporting organic/inorganic interpenetrating networks to porous metal boride monoliths. Journal of the American Ceramic Society, 2019, 102, 5746-5762.	3.8	7
31	Useful High-Entropy Source on Spinel Oxides for Gas Detection. Sensors, 2022, 22, 4233.	3.8	4
32	Preparation of Ultra-High Temperature Ceramics–Based Materials by Sol-Gel Routes. , 2017, , .		0
33	Low-temperature synthesis of high-entropy (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O nanoparticles via polyol process. Open Ceramics, 2022, 9, 100223.	2.0	0