Susan Lynch

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/332850/susan-lynch-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

142	16,034	54	126
papers	citations	h-index	g-index
153	20,047 ext. citations	10.1	7.02
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
142	Pneumonia surveillance with culture-independent metatranscriptomics in HIV-positive adults in Uganda: a cross-sectional study <i>Lancet Microbe, The</i> , 2022 , 3, e357-e365	22.2	O
141	Strain-resolved analysis in a randomized trial of antibiotic pretreatment and maintenance dose delivery mode with fecal microbiota transplant for ulcerative colitis <i>Scientific Reports</i> , 2022 , 12, 5517	4.9	0
140	Intestinal inflammation alters the antigen-specific immune response to a skin commensal. <i>Cell Reports</i> , 2022 , 39, 110891	10.6	1
139	Infant gut bacterial community composition and food-related manifestation of atopy in early childhood. <i>Pediatric Allergy and Immunology</i> , 2021 ,	4.2	2
138	Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host and Microbe, 2021,	23.4	9
137	Maternal gut microbiome regulates immunity to RSV infection in offspring. <i>Journal of Experimental Medicine</i> , 2021 , 218,	16.6	4
136	Impaired antibacterial immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19 2021 ,		5
135	Impaired immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19 2021 ,		2
134	Microbiota, Epigenetics, and Trained Immunity. Convergent Drivers and Mediators of the Asthma Trajectory from Pregnancy to Childhood. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2021 , 203, 802-808	10.2	10
133	Microscopic Colitis Patients Possess a Perturbed and Inflammatory Gut Microbiota. <i>Digestive Diseases and Sciences</i> , 2021 , 1	4	3
132	Synchronous genitourinary lichen sclerosus signals a distinct urinary microbiome profile in men with urethral stricture disease. <i>World Journal of Urology</i> , 2021 , 39, 605-611	4	4
131	Corroborating evidence refutes batch effect as explanation for fetal bacteria. <i>Microbiome</i> , 2021 , 9, 10	16.6	12
130	Unconjugated bilirubin is associated with protection from early-life wheeze and childhood asthma. <i>Journal of Allergy and Clinical Immunology</i> , 2021 , 148, 128-138	11.5	2
129	Gut microbiome is associated with multiple sclerosis activity in children. <i>Annals of Clinical and Translational Neurology</i> , 2021 , 8, 1867-1883	5.3	6
128	The oral microbiome: Role of key organisms and complex networks in oral health and disease. <i>Periodontology 2000</i> , 2021 , 87, 107-131	12.9	41
127	Associations of physical activity with gut microbiota in pre-adolescent children <i>Physical Activity and Nutrition</i> , 2021 , 25, 24-37	1.4	0
126	Moraxella-dominated pediatric nasopharyngeal microbiota associate with upper respiratory infection and sinusitis <i>PLoS ONE</i> , 2021 , 16, e0261179	3.7	2

125	Expression quantitative trait locus fine mapping of the 17q12-21 asthma locus in African American children: a genetic association and gene expression study. <i>Lancet Respiratory Medicine,the</i> , 2020 , 8, 482-	-492 ¹	20	
124	Viable bacterial colonization is highly limited in the human intestine in utero. <i>Nature Medicine</i> , 2020 , 26, 599-607	50.5	98	
123	Fetal and early postnatal lead exposure measured in teeth associates with infant gut microbiota. <i>Environment International</i> , 2020 , 144, 106062	12.9	11	
122	The human microbiome in the 21 century. <i>Nature Communications</i> , 2020 , 11, 5256	17.4	13	
121	Gut Microbial Regulation of Autism Spectrum Disorder Symptoms. <i>Trends in Endocrinology and Metabolism</i> , 2020 , 31, 809-811	8.8	О	
120	Maternal and cord blood vitamin D level and the infant gut microbiota in a birth cohort study. <i>Maternal Health, Neonatology and Perinatology</i> , 2020 , 6, 5	3.4	2	
119	Distinct lung microbiota associate with HIV-associated chronic lung disease in children. <i>Scientific Reports</i> , 2020 , 10, 16186	4.9	1	
118	Cervicovaginal Microbiome Composition Is Associated with Metabolic Profiles in Healthy Pregnancy. <i>MBio</i> , 2020 , 11,	7.8	12	
117	Association between cesarean delivery types and obesity in preadolescence. <i>International Journal of Obesity</i> , 2020 , 44, 2023-2034	5.5	5	
116	Fecal Microbiota Transplantation in Pouchitis: Clinical, Endoscopic, Histologic, and Microbiota Results from a Pilot Study. <i>Digestive Diseases and Sciences</i> , 2020 , 65, 1099-1106	4	28	
115	Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. <i>Journal of Allergy and Clinical Immunology</i> , 2020 , 146, 1016-1026	11.5	17	
114	Translating the gut microbiome: ready for the clinic?. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2019 , 16, 656-661	24.2	20	
113	Community ecology as a framework for human microbiome research. <i>Nature Medicine</i> , 2019 , 25, 884-88	9 50.5	54	
112	Fecal microbiota transplant for Crohn disease: A study evaluating safety, efficacy, and microbiome profile. <i>United European Gastroenterology Journal</i> , 2019 , 7, 807-814	5.3	31	
111	Gut microbiota in HIV-pneumonia patients is related to peripheral CD4 counts, lung microbiota, and in vitro macrophage dysfunction. <i>Microbiome</i> , 2019 , 7, 37	16.6	13	
110	Longitudinal Phenotypes of Respiratory Health in a High-Risk Urban Birth Cohort. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2019 , 199, 71-82	10.2	40	
109	Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. <i>Journal of Allergy and Clinical Immunology</i> , 2019 , 144, 1187-1197	11.5	61	
108	A20 in dendritic cells restrains intestinal anti-bacterial peptide expression and preserves commensal homeostasis. <i>PLoS ONE</i> , 2019 , 14, e0218999	3.7	6	

107	Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. <i>Nature Microbiology</i> , 2019 , 4, 1851-1861	26.6	83
106	Enteric Virome and Bacterial Microbiota in Children With Ulcerative Colitis and Crohn Disease. Journal of Pediatric Gastroenterology and Nutrition, 2019 , 68, 30-36	2.8	53
105	The gut microbiome: Relationships with disease and opportunities for therapy. <i>Journal of Experimental Medicine</i> , 2019 , 216, 20-40	16.6	272
104	Gut Microbial Metabolism and Nonalcoholic Fatty Liver Disease. <i>Hepatology Communications</i> , 2019 , 3, 29-43	6	13
103	Motility and biofilm formation of the emerging gastrointestinal pathogen Campylobacter concisus differs under microaerophilic and anaerobic environments. <i>Gut Microbes</i> , 2019 , 10, 34-44	8.8	2
102	Dog introduction alters the home dust microbiota. <i>Indoor Air</i> , 2018 , 28, 539-547	5.4	30
101	Current understanding of the human microbiome. <i>Nature Medicine</i> , 2018 , 24, 392-400	50.5	823
100	Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. <i>Nature Communications</i> , 2018 , 9, 707	17.4	100
99	Dynamics of Bacterial Colonization With Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis During Symptomatic and Asymptomatic Viral Upper Respiratory Tract Infection. <i>Clinical Infectious Diseases</i> , 2018 , 66, 1045-1053	11.6	55
98	Lung Microbiota Is Related to Smoking Status and to Development of Acute Respiratory Distress Syndrome in Critically Ill Trauma Patients. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2018 , 197, 621-631	10.2	65
97	Role of the lung microbiome in HIV pathogenesis. Current Opinion in HIV and AIDS, 2018, 13, 45-52	4.2	7
96	Prenatal antimicrobial use and early-childhood body mass index. <i>International Journal of Obesity</i> , 2018 , 42, 1-7	5.5	30
95	Early-life home environment and risk of asthma among inner-city children. <i>Journal of Allergy and Clinical Immunology</i> , 2018 , 141, 1468-1475	11.5	115
94	Heterogeneity of Microbiota Dysbiosis in Chronic Rhinosinusitis: Potential Clinical Implications and Microbial Community Mechanisms Contributing to Sinonasal Inflammation. <i>Frontiers in Cellular and Infection Microbiology</i> , 2018 , 8, 168	5.9	12
93	Bacterial biogeography of adult airways in atopic asthma. <i>Microbiome</i> , 2018 , 6, 104	16.6	57
92	Rules of engagement in the gut microbiome. <i>Nature Medicine</i> , 2018 , 24, 1642-1644	50.5	2
91	Differences in the fecal microbiota of neonates born at home or in the hospital. <i>Scientific Reports</i> , 2018 , 8, 15660	4.9	29
90	Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. <i>Microbiome</i> , 2018 , 6, 154	16.6	110

(2016-2017)

89	Bacteroides are associated with GALT iNKT cell function and reduction of microbial translocation in HIV-1 infection. <i>Mucosal Immunology</i> , 2017 , 10, 69-78	9.2	32
88	Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. <i>Microbiome</i> , 2017 , 5, 53	16.6	88
87	Limited engraftment of donor microbiome via one-time fecal microbial transplantation in treated HIV-infected individuals. <i>Gut Microbes</i> , 2017 , 8, 440-450	8.8	38
86	Breast Milk Transforming Growth Factor IIs Associated With Neonatal Gut Microbial Composition. Journal of Pediatric Gastroenterology and Nutrition, 2017, 65, e60-e67	2.8	31
85	Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation. <i>Mucosal Immunology</i> , 2017 , 10, 1569-1580	9.2	48
84	Early Probiotic Supplementation for Eczema and Asthma Prevention: A Randomized Controlled Trial. <i>Pediatrics</i> , 2017 , 140,	7.4	73
83	Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. <i>Journal of Allergy and Clinical Immunology</i> , 2017 , 140, 63-75	11.5	153
82	Immune Response and Mortality Risk Relate to Distinct Lung Microbiomes in Patients with HIV and Pneumonia. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2017 , 195, 104-114	10.2	47
81	Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury. <i>Trauma Surgery and Acute Care Open</i> , 2017 , 2, e000108	2.4	47
80	Disease Severity and Immune Activity Relate to Distinct Interkingdom Gut Microbiome States in Ethnically Distinct Ulcerative Colitis Patients. <i>MBio</i> , 2016 , 7,	7.8	56
79	Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. <i>Nature Medicine</i> , 2016 , 22, 1187-1191	50.5	548
78	Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls. <i>BMC Neurology</i> , 2016 , 16, 182	3.1	69
77	Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity. <i>Scientific Reports</i> , 2016 , 6, 31775	4.9	78
76	Nasopharyngeal microbiota composition of children is related to the frequency of upper respiratory infection and acute sinusitis. <i>Microbiome</i> , 2016 , 4, 34	16.6	51
75	Maternal group B Streptococcus and the infant gut microbiota. <i>Journal of Developmental Origins of Health and Disease</i> , 2016 , 7, 45-53	2.4	27
74	Clinical Features, Virus Identification, and Sinusitis as a Complication of Upper Respiratory Tract Illness in Children Ages 4-7 Years. <i>Journal of Pediatrics</i> , 2016 , 171, 133-9.e1	3.6	27
73	Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. <i>JCI Insight</i> , 2016 , 1,	9.9	8
72	Gut Microbiota and Allergic Disease. New Insights. <i>Annals of the American Thoracic Society</i> , 2016 , 13 Suppl 1, S51-4	4.7	37

71	Race-specific Association of Caesarean-Section Delivery with Body Size at Age 2 Years. <i>Ethnicity and Disease</i> , 2016 , 26, 61-8	1.8	3
70	The microbiome and development of allergic disease. <i>Current Opinion in Allergy and Clinical Immunology</i> , 2016 , 16, 165-71	3.3	57
69	Airway Microbiota and the Implications of Dysbiosis in Asthma. <i>Current Allergy and Asthma Reports</i> , 2016 , 16, 52	5.6	32
68	Gut microbiota in early pediatric multiple sclerosis: a case-control study. <i>European Journal of Neurology</i> , 2016 , 23, 1308-1321	6	172
67	The Lung Microbiome and Airway Disease. Annals of the American Thoracic Society, 2016, 13 Suppl 2, S4	64 .5 46	5523
66	The Human Intestinal Microbiome in Health and Disease. <i>New England Journal of Medicine</i> , 2016 , 375, 2369-2379	59.2	1429
65	A chronic rhinosinusitis-derived isolate of Pseudomonas aeruginosa induces acute and pervasive effects on the murine upper airway microbiome and host immune response. <i>International Forum of Allergy and Rhinology</i> , 2016 , 6, 1229-1237	6.3	5
64	Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. <i>Cell Host and Microbe</i> , 2015 , 17, 592-602	23.4	242
63	Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection in Pediatric Patients: Encouragement Wrapped in Caution. <i>Journal of Pediatric Gastroenterology and Nutrition</i> , 2015 , 60, 1-3	2.8	13
62	Novel microbiome-based therapeutics for chronic rhinosinusitis. <i>Current Allergy and Asthma Reports</i> , 2015 , 15, 504	5.6	29
61	Multicenter Comparison of Lung and Oral Microbiomes of HIV-infected and HIV-uninfected Individuals. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2015 , 192, 1335-44	10.2	97
60	The airway microbiome in patients with severe asthma: Associations with disease features and severity. <i>Journal of Allergy and Clinical Immunology</i> , 2015 , 136, 874-84	11.5	260
59	Influence and effect of the human microbiome in allergy and asthma. <i>Current Opinion in Rheumatology</i> , 2015 , 27, 373-80	5.3	38
58	Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. <i>PLoS ONE</i> , 2015 , 10, e0117617	3.7	175
57	Gut-Resident Lactobacillus Abundance Associates with IDO1 Inhibition and Th17 Dynamics in SIV-Infected Macaques. <i>Cell Reports</i> , 2015 , 13, 1589-97	10.6	54
56	Does pet-keeping modify the association of delivery mode with offspring body size?. <i>Maternal and Child Health Journal</i> , 2015 , 19, 1426-33	2.4	10
55	Viruses and microbiome alterations. <i>Annals of the American Thoracic Society</i> , 2014 , 11 Suppl 1, S57-60	4.7	39
54	Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. <i>Journal of Clinical Microbiology</i> , 2014 , 52, 2813-23	9.7	206

53	Rearrangement of a large novel Pseudomonas aeruginosa gene island in strains isolated from a patient developing ventilator-associated pneumonia. <i>Journal of Clinical Microbiology</i> , 2014 , 52, 2430-8	9.7	7
52	Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. <i>Journal of Allergy and Clinical Immunology</i> , 2014 , 134, 593-601.e12	11.5	263
51	House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 805-10	11.5	293
50	Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. <i>Science Translational Medicine</i> , 2014 , 6, 252ra120	17.5	87
49	Fecal microbial therapy: promises and pitfalls. <i>Journal of Pediatric Gastroenterology and Nutrition</i> , 2014 , 59, 157-61	2.8	12
48	Amelioration of DSS-induced murine colitis by VSL#3 supplementation is primarily associated with changes in ileal microbiota composition. <i>Gut Microbes</i> , 2014 , 5, 494-503	8.8	38
47	The lung microbiome of Ugandan HIV-infected pneumonia patients is compositionally and functionally distinct from that of San Franciscan patients. <i>PLoS ONE</i> , 2014 , 9, e95726	3.7	46
46	Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. <i>Science Translational Medicine</i> , 2013 , 5, 193ra91	17.5	427
45	Relationship between Bacterial Colonization of Human Digestive and Respiratory Tract. <i>World Review of Nutrition and Dietetics</i> , 2013 , 64-71	0.2	
44	Use of bronchoalveolar lavage to assess the respiratory microbiome: signal in the noise. <i>Lancet Respiratory Medicine, the</i> , 2013 , 1, 354-6	35.1	33
43	Comparison of the respiratory microbiome in healthy nonsmokers and smokers. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 187, 1067-75	10.2	501
42	Probiotic strategies for treatment of respiratory diseases. <i>Trends in Microbiology</i> , 2013 , 21, 485-92	12.4	24
41	Widespread colonization of the lung by Tropheryma whipplei in HIV infection. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 187, 1110-7	10.2	140
40	Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota. <i>Gut Microbes</i> , 2013 , 4, 41-7	8.8	76
39	The cystic fibrosis airway microbiome. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2013 , 3, a009738	5.4	78
38	The potential for probiotic manipulation of the gastrointestinal microbiome. <i>Current Opinion in Biotechnology</i> , 2012 , 23, 192-201	11.4	56
37	Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia. <i>Cellular Microbiology</i> , 2012 , 14, 698-709	3.9	46
36	Oral and airway microbiota in HIV-infected pneumonia patients. <i>Journal of Clinical Microbiology</i> , 2012 , 50, 2995-3002	9.7	56

35	Gut dysbiosis in cystic fibrosis. <i>Journal of Cystic Fibrosis</i> , 2012 , 11, 454-5	4.1	44
34	Development of a standardized approach for environmental microbiota investigations related to asthma development in children. <i>Journal of Microbiological Methods</i> , 2012 , 91, 231-9	2.8	7
33	Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. <i>Science Translational Medicine</i> , 2012 , 4, 151ra124	17.5	276
32	PcrV antibody-antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice. <i>European Journal of Clinical Microbiology and Infectious Diseases</i> , 2012 , 31, 1837-45	5.3	41
31	Role of the microbiota in inflammatory bowel diseases. <i>Inflammatory Bowel Diseases</i> , 2012 , 18, 968-84	4.5	198
30	Significance of the microbiome in obstructive lung disease. <i>Thorax</i> , 2012 , 67, 456-63	7.3	161
29	Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. <i>Journal of Allergy and Clinical Immunology</i> , 2011 , 127, 372-381.e1-3	11.5	486
28	Effect of prenatal indoor pet exposure on the trajectory of total IgE levels in early childhood. Journal of Allergy and Clinical Immunology, 2011 , 128, 880-885.e4	11.5	54
27	Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. <i>Gastroenterology</i> , 2011 , 141, 1782-91	13.3	464
26	The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. <i>Expert Review of Respiratory Medicine</i> , 2011 , 5, 809-21	3.8	78
25	Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. <i>Environmental Microbiology</i> , 2010 , 12, 1293-303	5.2	183
24	Probiotic manipulation of the gastrointestinal microbiota. <i>Gut Microbes</i> , 2010 , 1, 335-338	8.8	20
23	Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. <i>MBio</i> , 2010 , 1,	7.8	213
22	Role of the gut microbiota in defining human health. <i>Expert Review of Anti-Infective Therapy</i> , 2010 , 8, 435-54	5.5	265
21	Man's best friend? The effect of pet ownership on house dust microbial communities. <i>Journal of Allergy and Clinical Immunology</i> , 2010 , 126, 410-2, 412.e1-3	11.5	178
20	A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. <i>OMICS A Journal of Integrative Biology</i> , 2010 , 14, 9-59	3.8	178
19	Polymorphisms in the Pseudomonas aeruginosa type III secretion protein, PcrV - implications for anti-PcrV immunotherapy. <i>Microbial Pathogenesis</i> , 2010 , 48, 197-204	3.8	25
18	Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration. <i>Microbial Pathogenesis</i> , 2010 , 49, 196-203	3.8	26

LIST OF PUBLICATIONS

17	Forced evolution of Escherichia coli cells with the ability to effectively utilize non-natural amino acids l-tert-leucine, l-norleucine and Emethyl-l-leucine. <i>Biocatalysis and Biotransformation</i> , 2010 , 28, 293	3-303	3
16	Nucleic acid extraction efficiency and bacterial recovery from maxillary sinus mucosal samples obtained by brushing or biopsy. <i>American Journal of Rhinology and Allergy</i> , 2010 , 24, 263-5	2.4	8
15	Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. <i>PLoS ONE</i> , 2010 , 5, e8745	3.7	93
14	Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. <i>PLoS ONE</i> , 2010 , 5, e11044	3.7	331
13	Matrix metalloproteases in bronchoalveolar lavage fluid of patients with type III Pseudomonas aeruginosa pneumonia. <i>Journal of Infection</i> , 2009 , 59, 49-55	18.9	14
12	Induction of intestinal Th17 cells by segmented filamentous bacteria. <i>Cell</i> , 2009 , 139, 485-98	56.2	3110
11	Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2008 , 178, 513-9	10.2	120
10	Novel strategies to combat bacterial virulence. <i>Current Opinion in Critical Care</i> , 2008 , 14, 593-9	3.5	32
9	Increased mortality of ventilated patients with endotracheal Pseudomonas aeruginosa without clinical signs of infection. <i>Critical Care Medicine</i> , 2008 , 36, 2495-503	1.4	51
8	Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. <i>Journal of Clinical Microbiology</i> , 2007 , 45, 1954-62	9.7	143
7	Microbial manipulation of immune function for asthma prevention: inferences from clinical trials. <i>Proceedings of the American Thoracic Society</i> , 2007 , 4, 277-82		44
6	Presence or absence of lipopolysaccharide O antigens affects type III secretion by Pseudomonas aeruginosa. <i>Journal of Bacteriology</i> , 2007 , 189, 2203-9	3.5	49
5	Increased plasminogen activator inhibitor-1 concentrations in bronchoalveolar lavage fluids are associated with increased mortality in a cohort of patients with Pseudomonas aeruginosa. Anesthesiology, 2007, 106, 252-61	4.3	56
4	New enzyme for reductive cancer chemotherapy, YieF, and its improvement by directed evolution. <i>Molecular Cancer Therapeutics</i> , 2006 , 5, 97-103	6.1	43
3	ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. <i>Journal of Biological Chemistry</i> , 2005 , 280, 22590-5	5.4	102
2	Cervicovaginal microbiome composition drives metabolic profiles in healthy pregnancy		2
1	Phyloarrays75-84		2