List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3327997/publications.pdf Version: 2024-02-01

		109321	118850
132	4,745	35	62
papers	citations	h-index	g-index
132 all docs	132 docs citations	132 times ranked	5772 citing authors

WEIGING XII

#	Article	IF	CITATIONS
1	Surface-state triggered solvatochromism of carbonized polymer dot and its two-photon luminescence. Nano Research, 2022, 15, 2567-2575.	10.4	15
2	Electrostimulus Associated PD-L1 Expression on Cell Membrane Revealed by Immune SERS Nanoprobes. Analyst, The, 2022, , .	3.5	2
3	Piezochromic Luminescence of Cyano Substituted E/Z Isomeric Derivatives: Different Responses to External Stimuli. Advanced Optical Materials, 2022, 10, .	7.3	8
4	Single-Cell VEGF Analysis by Fluorescence Imaging–Microfluidic Droplet Platform: An Immunosandwich Strategy on the Cell Surface. Analytical Chemistry, 2022, 94, 6591-6598.	6.5	8
5	MicroRNA-21 expression in single living cells revealed by fluorescence and SERS dual-response microfluidic droplet platform. Lab on A Chip, 2022, 22, 2165-2172.	6.0	12
6	Microfluidic Droplet-SERS Platform for Single-Cell Cytokine Analysis via a Cell Surface Bioconjugation Strategy. Analytical Chemistry, 2022, 94, 10375-10383.	6.5	15
7	SERS hydrogel pellets for highly repeatable and reliable detections of significant small biomolecules in complex samples without pretreatment. Sensors and Actuators B: Chemical, 2021, 327, 128943.	7.8	22
8	Polymorphism-based luminescence and morphology-dependent optical waveguide properties in 1 : 1 charge transfer cocrystals. Materials Chemistry Frontiers, 2021, 5, 1477-1485.	5.9	17
9	Spatially confined photoexcitation with triplet–triplet annihilation upconversion. Chemical Communications, 2021, 57, 9044-9047.	4.1	20
10	Piezochromic mechanism of organic crystals under hydrostatic pressure. Materials Chemistry Frontiers, 2021, 5, 2588-2606.	5.9	26
11	Surface-Doped Organic Charge Transfer Cocrystal Heterostructures and Their Variable Dual-Color Light Emission and Propagation. Crystal Growth and Design, 2021, 21, 2699-2710.	3.0	9
12	Single-Cell Oxidative Stress Events Revealed by a Renewable SERS Nanotip. ACS Sensors, 2021, 6, 1663-1670.	7.8	15
13	Tuning Organic Microcrystal Morphologies through Crystal Engineering Strategies toward Anisotropic Optical Waveguide. Journal of Physical Chemistry Letters, 2021, 12, 4585-4592.	4.6	21
14	Ultrasensitive detection of trypsin in serum via nanochannel device. Analytical and Bioanalytical Chemistry, 2021, 413, 4939-4945.	3.7	7
15	Elastic Organic Crystals Based on Barbituric Derivative: Multiâ€faceted Bending and Flexible Optical Waveguide. Chemistry - A European Journal, 2021, 27, 16036-16042.	3.3	22
16	Investigating Lysosomal Autophagy <i>via</i> Surface-Enhanced Raman Scattering Spectroscopy. Analytical Chemistry, 2021, 93, 13038-13044.	6.5	5
17	Metformin hydrochloride action on cell membrane N-cadherin expression and cell nucleus revealed by SERS nanoprobes. Talanta, 2021, 232, 122442.	5.5	3
18	Evolution of High Symmetry Points of Photonic Alumina Superlattices in a Lithography-Free Approach. ACS Applied Materials & Interfaces, 2021, 13, 47262-47271.	8.0	7

#	Article	IF	CITATIONS
19	A carbonized polymer dot (CPD) nanosensor for trace water detection with a wide detection range. Dyes and Pigments, 2021, 196, 109805.	3.7	10
20	Label-Free Single-Particle Surface-Enhanced Raman Spectroscopy Detection of Phosphatidylserine Externalization on Cell Membranes with Multifunctional Micron-Nano Composite Probes. Analytical Chemistry, 2021, 93, 2183-2190.	6.5	21
21	Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. Theranostics, 2021, 11, 4872-4893.	10.0	29
22	Label-Free Analysis of Cell Membrane Proteins via Evanescent Field Excited Surface-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2021, 12, 10720-10727.	4.6	2
23	A multifunctional material with distinct mechanochromic and piezochromic properties: π-stacking in play. Materials Chemistry Frontiers, 2021, 6, 86-93.	5.9	10
24	Programmable photoresponsive materials based on a single molecule <i>via</i> distinct topochemical reactions. Chemical Science, 2021, 12, 15588-15595.	7.4	20
25	Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions. Carbon, 2020, 156, 558-567.	10.3	65
26	A "simple―donor–acceptor AlEgen with multi-stimuli responsive behavior. Materials Horizons, 2020, 7, 135-142.	12.2	77
27	Morphologyâ€Dependent Luminescence and Optical Waveguide Property in Largeâ€Size Organic Charge Transfer Cocrystals with Anisotropic Spatial Distribution of Transition Dipole Moment. Advanced Optical Materials, 2020, 8, 1901280.	7.3	34
28	Intracellular pH-propelled assembly of smart carbon nanodots and selective photothermal therapy for cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110724.	5.0	12
29	Target-triggered hot spot dispersion for cellular biothiol detection via background-free surface-enhanced Raman scattering tags. Biosensors and Bioelectronics, 2020, 151, 111957.	10.1	20
30	Novel halogen-bonded co-crystals and their unique luminescence property during 10ÂGPa compression-decompression cycle. Dyes and Pigments, 2020, 175, 108116.	3.7	7
31	Surface Plasmon Field-Enhanced Raman Scattering Based on Evanescent Field Excitation of Waveguide-Coupled Surface Plasmon Resonance Configuration. Journal of Physical Chemistry C, 2020, 124, 1640-1645.	3.1	11
32	Multicolored fluorescence variation of a new carbazole-based AIEE molecule by external stimuli. Physical Chemistry Chemical Physics, 2020, 22, 19195-19201.	2.8	7
33	Long-Range Surface Plasmon Resonance Configuration for Enhancing SERS with an Adjustable Refractive Index Sample Buffer to Maintain the Symmetry Condition. ACS Omega, 2020, 5, 32951-32958.	3.5	8
34	Smart Surface-Enhanced Resonance Raman Scattering Nanoprobe for Monitoring Cellular Alkaline Phosphatase Activity during Osteogenic Differentiation. ACS Sensors, 2020, 5, 1758-1767.	7.8	36
35	Dibenzo[a,c]phenazine-phenothiazine dyad: AIEE, polymorphism, distinctive mechanochromism, high sensitivity to pressure. Dyes and Pigments, 2020, 181, 108575.	3.7	16
36	Multi-functionalized Nano-conjugate for combating multidrug resistant breast Cancer via starvation-assisted chemotherapy. Materials Science and Engineering C, 2020, 116, 111127.	7.3	9

#	Article	IF	CITATIONS
37	Plasmon-Enhanced Four-Wave Mixing Imaging for Microdroplet-Based Single-Cell Analysis. Analytical Chemistry, 2020, 92, 9459-9464.	6.5	5
38	Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. Advanced Materials, 2020, 32, e1906641.	21.0	271
39	Achievement of Highâ€Performance Nondoped Blue OLEDs Based on AlEgens via Construction of Effective High‣ying Chargeâ€Transfer State. Advanced Optical Materials, 2020, 8, 1902195.	7.3	29
40	Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy. Analytical Chemistry, 2020, 92, 6081-6087.	6.5	19
41	Tumor Microenvironment-Activated Degradable Multifunctional Nanoreactor for Synergistic Cancer Therapy and Glucose SERS Feedback. IScience, 2020, 23, 101274.	4.1	30
42	Structural change of trans-azobenzene crystal and powder under high pressure. Journal of Molecular Structure, 2020, 1206, 127745.	3.6	3
43	Tetraphenylethene-based tetracationic dicyclophanes: synthesis, mechanochromic luminescence, and photochemical reactions. Chemical Communications, 2020, 56, 3195-3198.	4.1	37
44	In situ and ex situ surfaceâ€enhanced Raman spectroscopy (SERS) analysis of cell mitochondria. Journal of Raman Spectroscopy, 2020, 51, 602-610.	2.5	5
45	Pressure-dependent distinct luminescent evolutions of pyrene and TPA-Py single crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118390.	3.9	9
46	Reversible Luminescent Switching in an Organic Cocrystal: Multiâ€Stimuliâ€Induced Crystalâ€toâ€Crystal Phase Transformation. Angewandte Chemie - International Edition, 2020, 59, 15098-15103.	13.8	100
47	A two-photon fluorescence, carbonized polymer dot (CPD)-based, wide range pH nanosensor: a view from the surface state. Nanoscale, 2020, 12, 9094-9103.	5.6	22
48	Tracing the molecular dynamics of living mitochondria under phototherapy <i>via</i> surface-enhanced Raman scattering spectroscopy. Analyst, The, 2019, 144, 5521-5527.	3.5	10
49	Flexible control of excited state transition under pressure/temperature: distinct stimuli-responsive behaviours of two ESIPT polymorphs. Materials Chemistry Frontiers, 2019, 3, 2128-2136.	5.9	18
50	Ex situ and in situ surface-enhanced Raman spectroscopy for macromolecular profiles of cell nucleus. Analytical and Bioanalytical Chemistry, 2019, 411, 6021-6029.	3.7	7
51	Living-Cell Imaging of Mitochondrial Membrane Potential Oscillation and Phenylalanine Metabolism Modulation during Periodic Electrostimulus. Analytical Chemistry, 2019, 91, 9571-9579.	6.5	29
52	Silver nanoparticle-enhanced four-wave mixing (FWM) imaging technique for visualizing sialic acid on cell membrane. Sensors and Actuators B: Chemical, 2019, 301, 127074.	7.8	7
53	Cellular heterogeneity identified by single-cell alkaline phosphatase (ALP) <i>via</i> a SERRS-microfluidic droplet platform. Lab on A Chip, 2019, 19, 335-342.	6.0	55
54	An ESIPT-based fluorescent switch with AIEE, solvatochromism, mechanochromism and photochromism. Materials Chemistry Frontiers, 2019, 3, 620-625.	5.9	51

#	Article	IF	CITATIONS
55	Photochromism of aminobenzopyrano-xanthene with different fluorescent behavior in solution and the crystal state. Journal of Materials Chemistry C, 2019, 7, 275-280.	5.5	14
56	Ultrasensitive Raman sensing of alkaline phosphatase activity in serum based on an enzyme-catalyzed reaction. Analytical Methods, 2019, 11, 3501-3505.	2.7	10
57	Solvation-Enhanced Intermolecular Charge Transfer Interaction in Organic Cocrystals: Enlarged C–C Surface Close Contact in Mixed Packing between PTZ and TCNB. ACS Omega, 2019, 4, 10424-10430.	3.5	13
58	Schiff base-bridged TPE-rhodamine dyad: facile synthesis, distinct response to shearing and hydrostatic pressure, and sequential multicolored acidichromism. Journal of Materials Chemistry C, 2019, 7, 8398-8403.	5.5	27
59	Distinct stimuli-responsive behavior for two polymorphs of 9,10-bis(phenylethynyl)anthracene under pressure based on intermolecular interactions. Dyes and Pigments, 2019, 170, 107603.	3.7	11
60	Distinguishing cancer cell lines at aÂsingle living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform. Mikrochimica Acta, 2019, 186, 367.	5.0	18
61	SERS-active fiber tip for intracellular and extracellular pH sensing in living single cells. Sensors and Actuators B: Chemical, 2019, 290, 527-534.	7.8	43
62	Luminescent switching and structural transition through multiple external stimuli based on organic molecular polymorphs. Journal of Materials Chemistry C, 2019, 7, 3263-3268.	5.5	44
63	Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfluidic Droplet Platform. Analytical Chemistry, 2019, 91, 15484-15490.	6.5	58
64	Pressure-induced remarkable luminescence switch of a dimer form of donor–acceptor–donor triphenylamine (TPA) derivative. Materials Chemistry Frontiers, 2019, 3, 2768-2774.	5.9	15
65	A Smartphone-assisted Paper-based Analytical Device for Fluorescence Assay of Hg2+. Chemical Research in Chinese Universities, 2019, 35, 972-977.	2.6	8
66	Remarkable responsive behaviors of iso-aminobenzopyranoxanthenes: protonation effect, photochromism and piezochromism. Dyes and Pigments, 2019, 162, 831-836.	3.7	9
67	Interference-free surface-enhanced Raman scattering nanosensor for imaging and dynamic monitoring of reactive oxygen species in mitochondria during photothermal therapy. Sensors and Actuators B: Chemical, 2019, 285, 84-91.	7.8	25
68	Ultrasensitive and Simultaneous Detection of Two Cytokines Secreted by Single Cell in Microfluidic Droplets via Magnetic-Field Amplified SERS. Analytical Chemistry, 2019, 91, 2551-2558.	6.5	71
69	Waveguide-coupled localized surface plasmon resonance for surface-enhanced Raman scattering: Antenna array as emitters. Sensors and Actuators B: Chemical, 2019, 280, 144-150.	7.8	15
70	Pressure-induced remarkable luminescence-changing behaviours of 9, 10-distyrylanthracene and its derivatives with distinct substituents. Dyes and Pigments, 2019, 161, 182-187.	3.7	11
71	Pressure induced the largest emission wavelength change in a single crystal. Dyes and Pigments, 2019, 162, 136-144.	3.7	26
72	Organelle-Targeting Gold Nanorods for Macromolecular Profiling of Subcellular Organelles and Enhanced Cancer Cell Killing. ACS Applied Materials & amp; Interfaces, 2018, 10, 7910-7918.	8.0	62

#	Article	IF	CITATIONS
73	Reversible Emission Shift: Pressureâ€Induced Wideâ€Range Reversible Emission Shift of Triphenylamineâ€Substituted Anthracene via Hybridized Local and Charge Transfer (HLCT) Excited State (Advanced Optical Materials 3/2018). Advanced Optical Materials, 2018, 6, 1870013.	7.3	3
74	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie, 2018, 130, 2417-2422.	2.0	55
75	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie - International Edition, 2018, 57, 2393-2398.	13.8	429
76	In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe. Analytical and Bioanalytical Chemistry, 2018, 410, 585-594.	3.7	12
77	Pressureâ€Induced Wideâ€Range Reversible Emission Shift of Triphenylamineâ€Substituted Anthracene via Hybridized Local and Charge Transfer (HLCT) Excited State. Advanced Optical Materials, 2018, 6, 1700647.	7.3	49
78	Identification of breast cancer through spectroscopic analysis of cell-membrane sialic acid expression. Analytica Chimica Acta, 2018, 1033, 148-155.	5.4	19
79	Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals. Talanta, 2018, 178, 498-506.	5.5	22
80	Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. Nanoscale, 2018, 10, 1622-1630.	5.6	120
81	Glucose-bridged silver nanoparticle assemblies for highly sensitive molecular recognition of sialic acid on cancer cells via surface-enhanced raman scattering spectroscopy. Talanta, 2018, 179, 200-206.	5.5	24
82	Remarkable pressure-induced emission enhancement based on intermolecular charge transfer in halogen bond-driven dual-component co-crystals. Physical Chemistry Chemical Physics, 2018, 20, 30297-30303.	2.8	18
83	Quantitative Determination of Urine Glucose: Combination of Laminar Flow in Microfluidic Chip with SERS Probe Technique. Chemical Research in Chinese Universities, 2018, 34, 899-904.	2.6	8
84	Direct observation of the wrapping/unwrapping of ssDNA around/from a SWCNT at the single-molecule level: towards tuning the binding mode and strength. Nanoscale, 2018, 10, 18586-18596.	5.6	22
85	Investigation of supramolecular interaction in 4, 4′-bipyridine crystal by hydrostatic pressure spectroscopies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 70-75.	3.9	1
86	Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal. Physical Chemistry Chemical Physics, 2018, 20, 13249-13254.	2.8	19
87	Tunable luminescence of a novel organic co-crystal based on intermolecular charge transfer under pressure. Journal of Materials Chemistry C, 2018, 6, 8958-8965.	5.5	40
88	Investigating Dynamic Molecular Events in Melanoma Cell Nucleus During Photodynamic Therapy by SERS. Frontiers in Chemistry, 2018, 6, 665.	3.6	21
89	A Single Crystal with Multiple Functions of Optical Waveguide, Aggregation-Induced Emission, and Mechanochromism. ACS Applied Materials & amp; Interfaces, 2017, 9, 8910-8918.	8.0	144
90	Tracing sialoglycans on cell membrane via surface-enhanced Raman scattering spectroscopy with a phenylboronic acid-based nanosensor in molecular recognition. Biosensors and Bioelectronics, 2017, 94, 148-154.	10.1	37

#	Article	IF	CITATIONS
91	Tracing the Therapeutic Process of Targeted Aptamer/Drug Conjugate on Cancer Cells by Surface-Enhanced Raman Scattering Spectroscopy. Analytical Chemistry, 2017, 89, 2844-2851.	6.5	58
92	A recyclable silver ions-specific surface-enhanced Raman scattering (SERS) sensor. Talanta, 2017, 171, 159-165.	5.5	10
93	Ultrasensitive Detection of Capsaicin in Oil for Fast Identification of Illegal Cooking Oil by SERRS. ACS Omega, 2017, 2, 8401-8406.	3.5	23
94	Integrated plasmon-enhanced Raman scattering (iPERS) spectroscopy. Scientific Reports, 2017, 7, 14630.	3.3	11
95	Aptamer-based surface-enhanced Raman scattering (SERS) sensor for thrombin based on supramolecular recognition, oriented assembly, and local field coupling. Analytical and Bioanalytical Chemistry, 2017, 409, 235-242.	3.7	23
96	Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy. Photonics Research, 2017, 5, 527.	7.0	19
97	Resonance Raman spectroscopy studies on photoinduced AgTCNQF ₄ charge transfer and its electrical switching behavior. Journal of Raman Spectroscopy, 2016, 47, 432-436.	2.5	1
98	Construction of highly sensitive surface-enhanced Raman scattering (SERS) nanosensor aimed for the testing of glucose in urine. RSC Advances, 2016, 6, 53800-53803.	3.6	24
99	Fe ₃ O ₄ @Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One. ACS Applied Materials & Interfaces, 2016, 8, 14160-14168.	8.0	106
100	Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose. Analytical and Bioanalytical Chemistry, 2016, 408, 7513-7520.	3.7	32
101	SERS determination of protease through a particle-on-a-film configuration constructed by electrostatic assembly in an enzymatic hydrolysis reaction. RSC Advances, 2016, 6, 90120-90125.	3.6	16
102	Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps. ACS Applied Materials & Interfaces, 2016, 8, 15623-15629.	8.0	18
103	Triblock copolymer tunes 1-dimensional AgTCNQ nanostructures in aqueous medium by a one-pot reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 214-220.	4.7	0
104	A voltage-controlled silver nanograting device for dynamic modulation of transmitted light based on the surface plasmon polariton effect. Nanoscale, 2016, 8, 4650-4656.	5.6	3
105	An organic–metal–inorganic three-component nanojunction array: design, construction and its reversible diode-like resistive electrical switching behavior. Journal of Materials Chemistry C, 2016, 4, 504-512.	5.5	3
106	Highly sensitive SERS sensor for mercury ions based on the catalytic reaction of mercury ion decorated Ag nanoparticles. RSC Advances, 2015, 5, 49759-49764.	3.6	31
107	Comparison of Shearing Force and Hydrostatic Pressure on Molecular Structures of Triphenylamine by Fluorescence and Raman Spectroscopies. Journal of Physical Chemistry A, 2015, 119, 1303-1308.	2.5	58
108	In Situ Surface-Enhanced Raman Scattering Spectroscopy Exploring Molecular Changes of Drug-Treated Cancer Cell Nucleus. Analytical Chemistry, 2015, 87, 2504-2510.	6.5	57

#	Article	IF	CITATIONS
109	Preparation of surface-enhanced Raman scattering(SERS)-active optical fiber sensor by laser-induced Ag deposition and its application in bioidentification of biotin/avidin. Chemical Research in Chinese Universities, 2015, 31, 25-30.	2.6	7
110	Note: A portable Raman analyzer for microfluidic chips based on a dichroic beam splitter for integration of imaging and signal collection light paths. Review of Scientific Instruments, 2015, 86, 056109.	1.3	2
111	Pursuing shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for concomitant detection of breast lesions and microcalcifications. Nanoscale, 2015, 7, 16960-16968.	5.6	38
112	Aptamer-Based Surface-Enhanced Raman Scattering-Microfluidic Sensor for Sensitive and Selective Polychlorinated Biphenyls Detection. Analytical Chemistry, 2015, 87, 9555-9558.	6.5	84
113	Reversible Piezofluorochromic Property and Intrinsic Structure Changes of Tetra(4-methoxyphenyl)ethylene under High Pressure. Journal of Physical Chemistry A, 2015, 119, 9218-9224.	2.5	36
114	Note: Raman microspectroscopy integrated with fluorescence and dark field imaging. Review of Scientific Instruments, 2014, 85, 056109.	1.3	24
115	A highly sensitive microfluidics system for multiplexed surface-enhanced Raman scattering (SERS) detection based on Ag nanodot arrays. RSC Advances, 2014, 4, 54434-54440.	3.6	37
116	A surface-enhanced Raman scattering (SERS)-active optical fiber sensor based on a three-dimensional sensing layer. Sensing and Bio-Sensing Research, 2014, 1, 8-14.	4.2	32
117	The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Analytical and Bioanalytical Chemistry, 2014, 406, 5425-5432.	3.7	40
118	A Surface-Enhanced Raman Scattering Optrode Prepared by <i>in Situ</i> Photoinduced Reactions and Its Application for Highly Sensitive On-Chip Detection. ACS Applied Materials & Interfaces, 2014, 6, 11706-11713.	8.0	18
119	Preparation of hierarchically structured anodic aluminum oxide by a hexagonal embedded nanosphere array. RSC Advances, 2014, 4, 45147-45150.	3.6	5
120	Luminescent composite polymer fibers: In situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Materials Science and Engineering C, 2014, 42, 333-340.	7.3	17
121	Waveguide-Enhanced Surface Plasmons for Ultrasensitive SERS Detection. Journal of Physical Chemistry Letters, 2013, 4, 3153-3157.	4.6	39
122	A Long-Range Surface Plasmon Resonance/Probe/Silver Nanoparticle (LRSPR-P-NP) Nanoantenna Configuration for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2012, 3, 2773-2778.	4.6	25
123	Long-Range Surface Plasmon Field-Enhanced Raman Scattering Spectroscopy Based on Evanescent Field Excitation. Journal of Physical Chemistry Letters, 2011, 2, 2218-2222.	4.6	41
124	Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation. Chemical Communications, 2011, 47, 3784.	4.1	78
125	Bioinspired Waterâ€Vaporâ€Responsive Organic/Inorganic Hybrid Oneâ€Dimensional Photonic Crystals with Tunable Fullâ€Color Stop Band. Advanced Functional Materials, 2010, 20, 3784-3790.	14.9	184
126	Note: Simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering. Review of Scientific Instruments, 2010, 81, 036105.	1.3	38

#	Article	IF	CITATIONS
127	Biomimetic Surfaces for Highâ€Performance Optics. Advanced Materials, 2009, 21, 4731-4734.	21.0	84
128	Surface $\hat{a} \in e$ nhanced Raman spectroscopy of indanthrone and flavanthrone. Journal of Raman Spectroscopy, 2009, 40, 1557-1563.	2.5	15
129	Photochemical Modification of an Optical Fiber Tip with a Silver Nanoparticle Film:  A SERS Chemical Sensor. Langmuir, 2008, 24, 4394-4398.	3.5	95
130	Laser-Induced Growth of Monodisperse Silver Nanoparticles with Tunable Surface Plasmon Resonance Properties and a Wavelength Self-Limiting Effect. Journal of Physical Chemistry C, 2007, 111, 14962-14967.	3.1	114
131	Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst, The, 2004, 129, 63.	3.5	189
132	Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 2827-2834.	3.9	152