## Mohammad Ismail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3327799/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Hydrogen sorption improvement of MgH2 catalyzed by CeO2 nanopowder. Journal of Alloys and Compounds, 2017, 695, 2532-2538.                                                                | 2.8 | 107       |
| 2  | Effect of LaCl 3 addition on the hydrogen storage properties of MgH 2. Energy, 2015, 79, 177-182.                                                                                         | 4.5 | 106       |
| 3  | Effects of NbF5 addition on the hydrogen storage properties of LiAlH4. International Journal of<br>Hydrogen Energy, 2010, 35, 2361-2367.                                                  | 3.8 | 105       |
| 4  | Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2. Journal of Energy Chemistry, 2019, 28, 46-53.                                                                       | 7.1 | 104       |
| 5  | The effect of K2SiF6 on the MgH2 hydrogen storage properties. Journal of Magnesium and Alloys, 2020,<br>8, 832-840.                                                                       | 5.5 | 103       |
| 6  | The hydrogen storage properties and catalytic mechanism of the CuFe2O4-doped MgH2 composite system. International Journal of Hydrogen Energy, 2019, 44, 318-324.                          | 3.8 | 91        |
| 7  | Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite. International<br>Journal of Hydrogen Energy, 2010, 35, 7821-7826.                                      | 3.8 | 90        |
| 8  | Nanoflakes MgNiO2 synthesised via a simple hydrothermal method and its catalytic roles on the hydrogen sorption performance of MgH2. Journal of Alloys and Compounds, 2019, 796, 279-286. | 2.8 | 90        |
| 9  | The hydrogen storage properties and reaction mechanism of the MgH 2 –NaAlH 4 composite system.<br>International Journal of Hydrogen Energy, 2011, 36, 9045-9050.                          | 3.8 | 85        |
| 10 | Improved Hydrogen Storage Properties of MgH <sub>2</sub> Co-Doped with FeCl <sub>3</sub> and<br>Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 18878-18883.                | 1.5 | 85        |
| 11 | LaFeO3 synthesised by solid-state method for enhanced sorption properties of MgH2. Results in Physics, 2020, 16, 102844.                                                                  | 2.0 | 84        |
| 12 | Advanced hydrogen storage of the Mg–Na–Al system: A review. Journal of Magnesium and Alloys, 2021,<br>9, 1111-1122.                                                                       | 5.5 | 83        |
| 13 | Improved hydrogen desorption in lithium alanate by addition of SWCNT–metallic catalyst composite.<br>International Journal of Hydrogen Energy, 2011, 36, 3593-3599.                       | 3.8 | 81        |
| 14 | MnFe2O4 nanopowder synthesised via a simple hydrothermal method for promoting hydrogen sorption from MgH2. International Journal of Hydrogen Energy, 2017, 42, 21114-21120.               | 3.8 | 79        |
| 15 | Influence of different amounts of FeCl3 on decomposition and hydrogen sorption kinetics of MgH2.<br>International Journal of Hydrogen Energy, 2014, 39, 2567-2574.                        | 3.8 | 78        |
| 16 | Synergistic catalytic effect of SrTiO3 and Ni on the hydrogen storage properties of MgH2.<br>International Journal of Hydrogen Energy, 2018, 43, 6244-6255.                               | 3.8 | 76        |
| 17 | Significantly improved dehydrogenation of LiAlH4 catalysed with TiO2 nanopowder. International Journal of Hydrogen Energy, 2011, 36, 8327-8334.                                           | 3.8 | 75        |
| 18 | Synthesis of BaFe12O19 by solid state method and its effect on hydrogen storage properties of MgH2.<br>International Journal of Hydrogen Energy, 2018, 43, 20853-20860.                   | 3.8 | 74        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials.<br>International Journal of Hydrogen Energy, 2021, 46, 31674-31698.                                                                        | 3.8 | 74        |
| 20 | Improvement of Hydrogen Storage Properties of MgH <sub>2</sub> Catalyzed by<br>K <sub>2</sub> NbF <sub>7</sub> and Multiwall Carbon Nanotube. Journal of Physical Chemistry C,<br>2018, 122, 11222-11233.                              | 1.5 | 72        |
| 21 | Improved hydrogen storage properties of MgH <sub>2</sub> by addition of Co <sub>2</sub> NiO<br>nanoparticles. RSC Advances, 2015, 5, 60983-60989.                                                                                      | 1.7 | 70        |
| 22 | Catalytic effect of CeCl3 on the hydrogen storage properties of MgH2. Materials Chemistry and Physics, 2016, 170, 77-82.                                                                                                               | 2.0 | 70        |
| 23 | Improved hydrogen storage properties of MgH 2 catalyzed with K 2 NiF 6. Journal of Energy Chemistry, 2016, 25, 832-839.                                                                                                                | 7.1 | 68        |
| 24 | Improvement of hydrogen storage properties in MgH2 catalysed by K2NbF7. International Journal of<br>Hydrogen Energy, 2018, 43, 14532-14540.                                                                                            | 3.8 | 68        |
| 25 | Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: A review. International<br>Journal of Hydrogen Energy, 2021, 46, 9123-9141.                                                                              | 3.8 | 68        |
| 26 | Modification of NaAlH4 properties using catalysts for solid-state hydrogen storage: A review.<br>International Journal of Hydrogen Energy, 2021, 46, 766-782.                                                                          | 3.8 | 67        |
| 27 | Effect of Na <sub>3</sub> FeF <sub>6</sub> catalyst on the hydrogen storage properties of MgH <sub>2</sub> . Dalton Transactions, 2016, 45, 7085-7093.                                                                                 | 1.6 | 62        |
| 28 | Enhanced hydrogen storage performance of LiAlH4–MgH2–TiF3 composite. International Journal of<br>Hydrogen Energy, 2011, 36, 5369-5374.                                                                                                 | 3.8 | 58        |
| 29 | Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2.<br>International Journal of Hydrogen Energy, 2021, 46, 8621-8628.                                                                          | 3.8 | 58        |
| 30 | Nanolayer-like-shaped MgFe <sub>2</sub> O <sub>4</sub> synthesised <i>via</i> a simple hydrothermal<br>method and its catalytic effect on the hydrogen storage properties of MgH <sub>2</sub> . RSC<br>Advances, 2018, 8, 15667-15674. | 1.7 | 56        |
| 31 | Influence of K2TiF6 additive on the hydrogen sorption properties of MgH2. International Journal of<br>Hydrogen Energy, 2014, 39, 15563-15569.                                                                                          | 3.8 | 55        |
| 32 | Enhanced hydrogen storage properties of MgH <sub>2</sub> co-catalyzed with<br>K <sub>2</sub> NiF <sub>6</sub> and CNTs. Dalton Transactions, 2016, 45, 19380-19388.                                                                    | 1.6 | 55        |
| 33 | Effect of different additives on the hydrogen storage properties of the MgH2-LiAlH4 destabilized system. RSC Advances, 2011, 1, 408.                                                                                                   | 1.7 | 53        |
| 34 | Improved hydrogen storage performance of MgH2–NaAlH4 composite by addition of TiF3. International<br>Journal of Hydrogen Energy, 2012, 37, 8395-8401.                                                                                  | 3.8 | 52        |
| 35 | Study on the hydrogen storage properties and reaction mechanism of NaAlH4–Mg(BH4)2 (2:1) with and without TiF3 additive. International Journal of Hydrogen Energy, 2015, 40, 7628-7635.                                                | 3.8 | 52        |
| 36 | Study on the hydrogen storage properties and reaction mechanism of NaAlH4–MgH2–LiBH4<br>ternary-hydride system. International Journal of Hydrogen Energy, 2014, 39, 8340-8346.                                                         | 3.8 | 47        |

| #  | Article                                                                                                                                                                                     | IF                | CITATIONS         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 37 | A study on the effects of K <sub>2</sub> ZrF <sub>6</sub> as an additive on the microstructure and hydrogen storage properties of MgH <sub>2</sub> . RSC Advances, 2015, 5, 9255-9260.      | 1.7               | 47                |
| 38 | Effect of SrFe <sub>12</sub> O <sub>19</sub> nanopowder on the hydrogen sorption properties of MgH <sub>2</sub> . RSC Advances, 2016, 6, 110004-110010.                                     | 1.7               | 46                |
| 39 | An investigation on the hydrogen storage properties and reaction mechanism of the destabilized<br>MgH2–Na3AlH6 (4:1)Âsystem. International Journal of Hydrogen Energy, 2013, 38, 1478-1483. | 3.8               | 45                |
| 40 | Enhanced hydrogen storage properties of 4MgH2Â+ÂLiAlH4 composite system by doping with Fe2O3<br>nanopowder. International Journal of Hydrogen Energy, 2014, 39, 7834-7841.                  | 3.8               | 45                |
| 41 | Hydrogen storage properties of a destabilized MgH2Sn system with TiF3 addition. Journal of Alloys and Compounds, 2016, 678, 297-303.                                                        | 2.8               | 44                |
| 42 | Effect of K2TiF6 additive on the hydrogen storage properties of 4MgH2–LiAlH4 destabilized system.<br>International Journal of Hydrogen Energy, 2015, 40, 7671-7677.                         | 3.8               | 32                |
| 43 | Catalytic effect of SrFe12O19 on the hydrogen storage properties of LiAlH4. International Journal of<br>Hydrogen Energy, 2017, 42, 19126-19134.                                             | 3.8               | 32                |
| 44 | Desorption properties of LiAlH4 doped with LaFeO3 catalyst. International Journal of Hydrogen<br>Energy, 2019, 44, 11953-11960.                                                             | 3.8               | 31                |
| 45 | Improved hydrogen storage performances of <scp> LiAlH <sub>4</sub> </scp> + Mg( <scp> BH) Tj ETQq1<br/>International Journal of Energy Research, 2021, 45, 2882-2898.</scp>                 | 1 0.784314<br>2.2 | rgBT /Overl<br>31 |
| 46 | Study the effect of SrFe12O19 on MgH2/LiAlH4 composite for solid-state hydrogen storage.<br>International Journal of Hydrogen Energy, 2017, 42, 29830-29839.                                | 3.8               | 28                |
| 47 | The hydrogen storage properties and reaction mechanism of the NaAlH4Â+ÂCa(BH4)2 composite system.<br>International Journal of Hydrogen Energy, 2018, 43, 11132-11140.                       | 3.8               | 27                |
| 48 | Enhancement of dehydrogenation properties in LiAlH4 catalysed by BaFe12O19. Journal of Alloys and Compounds, 2020, 835, 155183.                                                             | 2.8               | 26                |
| 49 | Catalytic effects of MgFe2O4 addition on the dehydrogenation properties of LiAlH4. International<br>Journal of Hydrogen Energy, 2019, 44, 28227-28234.                                      | 3.8               | 24                |
| 50 | Understanding the dehydrogenation properties of MgH2 catalysed by Na3AlF6. International Journal of Hydrogen Energy, 2019, 44, 30583-30590.                                                 | 3.8               | 23                |
| 51 | Dehydrogenation Properties and Catalytic Mechanism of the K <sub>2</sub> NiF <sub>6</sub> -Doped<br>NaAlH <sub>4</sub> System. ACS Omega, 2018, 3, 17100-17107.                             | 1.6               | 22                |
| 52 | The Hydrogen Storage Properties of Destabilized MgH2–AlH3 (2:1) System. Materials Today:<br>Proceedings, 2016, 3, S80-S87.                                                                  | 0.9               | 21                |
| 53 | Improved hydrogen storage properties of NaAlH4MgH2LiBH4 ternary-hydride system catalyzed by TiF3.<br>International Journal of Hydrogen Energy, 2016, 41, 18107-18113.                       | 3.8               | 21                |
| 54 | Catalytic effect of SrTiO3 on the dehydrogenation properties of LiAlH4. Journal of Alloys and Compounds, 2021, 855, 157475.                                                                 | 2.8               | 21                |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The hydrogen storage properties of Mg-Li-Al composite system catalyzed by K 2 ZrF 6. Journal of Physics and Chemistry of Solids, 2017, 104, 214-220.                                                                                                                     | 1.9 | 19        |
| 56 | A study on the hydrogen storage properties and reaction mechanism of Na3AlH6LiBH4 composite system. International Journal of Hydrogen Energy, 2018, 43, 8365-8374.                                                                                                       | 3.8 | 19        |
| 57 | Functions of MgH2 in the Hydrogen Storage Properties of a Na3AlH6–LiBH4 Composite. Journal of<br>Physical Chemistry C, 2018, 122, 23959-23967.                                                                                                                           | 1.5 | 19        |
| 58 | Catalytic effect of MgFe2O4 on the hydrogen storage properties of Na3AlH6–LiBH4 composite system.<br>International Journal of Hydrogen Energy, 2018, 43, 20882-20891.                                                                                                    | 3.8 | 19        |
| 59 | Influence of K2NbF7 Catalyst on the Desorption Behavior of LiAlH4. Frontiers in Chemistry, 2020, 8, 457.                                                                                                                                                                 | 1.8 | 19        |
| 60 | Enhanced dehydrogenation performance of <scp>NaAlH<sub>4</sub></scp> by the addition of spherical <scp>SrTiO<sub>3</sub></scp> . International Journal of Energy Research, 2021, 45, 8648-8658.                                                                          | 2.2 | 19        |
| 61 | Enhancement of hydrogen storage properties in 4MgH2 Na3AlH6 composite catalyzed by TiF3.<br>International Journal of Hydrogen Energy, 2017, 42, 21096-21104.                                                                                                             | 3.8 | 18        |
| 62 | Modifying the hydrogen storage performances of NaBH4 by catalyzing with MgFe2O4 synthesized via hydrothermal method. International Journal of Hydrogen Energy, 2019, 44, 6720-6727.                                                                                      | 3.8 | 18        |
| 63 | Effect of K2NbF7 on the hydrogen release behaviour of NaAlH4. Journal of Alloys and Compounds, 2021, 851, 156686.                                                                                                                                                        | 2.8 | 18        |
| 64 | Hydrogen storage properties of Mg-Li-Al composite system doped with Al2TiO5 catalyst for solid-state hydrogen storage. Journal of Alloys and Compounds, 2021, 870, 159469.                                                                                               | 2.8 | 18        |
| 65 | Intensive investigation on hydrogen storage properties and reaction mechanism of the NaBH4-Li3AlH6<br>destabilized system. International Journal of Hydrogen Energy, 2019, 44, 21965-21978.                                                                              | 3.8 | 17        |
| 66 | Significant effect of TiF3 on the performance of 2NaAlH4+Ca(BH4)2 hydrogen storage properties.<br>International Journal of Hydrogen Energy, 2019, 44, 21979-21987.                                                                                                       | 3.8 | 16        |
| 67 | Enhanced the hydrogen storage properties and reaction mechanisms of <scp> 4MgH <sub>2</sub> </scp> Â+ <scp> LiAlH <sub>4</sub> </scp> composite system by addition with <scp> TiO <sub>2</sub> </scp> . International Journal of Energy Research, 2021, 45, 21365-21374. | 2.2 | 15        |
| 68 | An Overview of the Recent Advances of Additive-Improved Mg(BH4)2 for Solid-State Hydrogen Storage<br>Material. Energies, 2022, 15, 862.                                                                                                                                  | 1.6 | 13        |
| 69 | Recent Advances on Mg–Li–Al Systems for Solid-State Hydrogen Storage: A Review. Frontiers in Energy<br>Research, 2022, 10, .                                                                                                                                             | 1.2 | 13        |
| 70 | Enhanced hydrogen storage performance of destabilized 4MgH2–Li3AlH6 system doped with Co2NiO<br>nanopowder. International Journal of Hydrogen Energy, 2015, 40, 10131-10138.                                                                                             | 3.8 | 12        |
| 71 | Hydrogen storage properties of 4MgH2–Li3AlH6 composite improved by the addition of K2TiF6.<br>International Journal of Hydrogen Energy, 2015, 40, 12713-12720.                                                                                                           | 3.8 | 12        |
| 72 | Enhancing the dehydrogenation properties of LiAlH4 using K2NiF6 as additive. International Journal of<br>Hydrogen Energy, 2022, 47, 24843-24851.                                                                                                                         | 3.8 | 11        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Enhanced hydrogen storage properties of K2TiF6 doped Mg-Na-Al composite system. Materials<br>Chemistry and Physics, 2018, 217, 350-356.                                                                                                             | 2.0 | 10        |
| 74 | CoFe2O4 synthesized via a solvothermal method for improved dehydrogenation of NaAlH4.<br>International Journal of Hydrogen Energy, 2022, 47, 41320-41328.                                                                                           | 3.8 | 9         |
| 75 | Catalytic effect of Al2TiO5 on the dehydrogenation properties of LiAlH4. International Journal of<br>Hydrogen Energy, 2022, 47, 31903-31910.                                                                                                        | 3.8 | 9         |
| 76 | Improved hydrogen storage properties of Mg-Li-Al-H composite system by milling with Fe2O3 powder.<br>Advanced Powder Technology, 2017, 28, 2151-2158.                                                                                               | 2.0 | 8         |
| 77 | Study of the Hydrogen Storage Properties and Catalytic Mechanism of a<br>MgH <sub>2</sub> –Na <sub>3</sub> AlH <sub>6</sub> System Incorporating FeCl <sub>3</sub> . ACS<br>Omega, 2021, 6, 18948-18956.                                            | 1.6 | 8         |
| 78 | An investigation on the addition of <scp>SrTiO<sub>3</sub></scp> to the hydrogen storage properties<br>of the <scp>4MgH<sub>2</sub>‣i<sub>3</sub>AlH<sub>6</sub></scp> composite. International Journal<br>of Energy Research, 2022, 46, 8030-8041. | 2.2 | 8         |
| 79 | The catalytic effect of an inert additive (SrTiO3) on the hydrogen storage properties of<br>4MgH2Na3AlH6. International Journal of Hydrogen Energy, 2018, 43, 20801-20810.                                                                          | 3.8 | 7         |
| 80 | Magnetism and Thermomechanical Properties in Si Substituted MnCoGe Compounds. Crystals, 2021, 11, 694.                                                                                                                                              | 1.0 | 7         |
| 81 | Study the Effect of NiF2 Additive on the Hydrogen Sorption Properties of 4MgH2+Li3AlH6 Destabilized<br>System. Materials Today: Proceedings, 2016, 3, S96-S103.                                                                                     | 0.9 | 6         |
| 82 | Effects of TiF3 addition on the hydrogen storage properties of 4MgH2Â+ÂCd composite. International<br>Journal of Hydrogen Energy, 2019, 44, 30574-30582.                                                                                            | 3.8 | 5         |
| 83 | Structure analysis using XRD refinement for replacement of copper (Cu) with manganese (Mn) in NdMn2Si2 compound. AIP Conference Proceedings, 2019, , .                                                                                              | 0.3 | 4         |
| 84 | Novel materials and technologies for hydrogen storage. , 2020, , 337-365.                                                                                                                                                                           |     | 4         |
| 85 | Designing Nanoconfined LiBH4 for Solid-State Electrolytes. Frontiers in Chemistry, 2022, 10, 866959.                                                                                                                                                | 1.8 | 3         |
| 86 | Designing lithium ion batteries for high power applications. , 0, , .                                                                                                                                                                               |     | 0         |
| 87 | Structural Behaviour and Electrical Properties of a Ball Milled MnCoGe Compounds. Key Engineering Materials, 0, 908, 326-331.                                                                                                                       | 0.4 | 0         |
| 88 | The Effect of Annealing Temperatures on the Phase Transition and Structural Properties of MnCoGe<br>Compound. Key Engineering Materials, 0, 908, 332-336.                                                                                           | 0.4 | 0         |