John W Wannop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3327274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of forefoot bending stiffness on American football performance and metatarsophalangeal joint bending angle. Sports Biomechanics, 2023, 22, 704-714.	0.8	2
2	The influence of midsole shear on running economy and smoothness with a 3D-printed midsole. Sports Biomechanics, 2023, 22, 410-421.	0.8	4
3	Influence of Compliance and Aging of Artificial Turf Surfaces on Lower Extremity Joint Loading. Biomechanics, 2022, 2, 66-75.	0.5	0
4	Rotational traction of soccer football shoes on a hybrid reinforced turf system and natural grass. Footwear Science, 2022, 14, 58-69.	0.8	3
5	Effects of midsole cushioning stiffness on Achilles tendon stretch during running. Scientific Reports, 2022, 12, 4193.	1.6	7
6	Measuring Gait Velocity and Stride Length with an Ultrawide Bandwidth Local Positioning System and an Inertial Measurement Unit. Sensors, 2021, 21, 2896.	2.1	8
7	Are subject-specific models necessary to predict patellar tendon fatigue life? A finite element modelling study. Computer Methods in Biomechanics and Biomedical Engineering, 2021, , 1-11.	0.9	1
8	Influence of Artificial Turf Surface Stiffness on Athlete Performance. Life, 2020, 10, 340.	1.1	3
9	Development of a Footwear Sizing System in the National Football League. Sports Health, 2019, 11, 40-46.	1.3	9
10	From Canmore to Kananaskis: where has the last 20 years in footwear science brought us?. Footwear Science, 2019, 11, S1-S2.	0.8	0
11	Effects of basketball court construction and shoe stiffness on countermovement jump landings. Footwear Science, 2019, 11, 171-179.	0.8	2
12	Influence of the composition of artificial turf on rotational traction and athlete biomechanics. Journal of Sports Sciences, 2019, 37, 1849-1856.	1.0	2
13	Effect of Shoe and Surface Stiffness on Lower Limb Tendon Strain in Jumping. Medicine and Science in Sports and Exercise, 2019, 51, 1895-1903.	0.2	16
14	Foot structure and knee joint kinetics during walking with and without wedged footwear insoles. Journal of Biomechanics, 2018, 73, 192-200.	0.9	9
15	Effect of torsional stiffness on biomechanical variables of the lower extremity during running. Footwear Science, 2017, 9, 1-8.	0.8	17
16	Influence of the composition of artificial turf on rotational traction and athlete biomechanics. Footwear Science, 2017, 9, S40-S42.	0.8	2
17	The influence of gearing footwear on running biomechanics. Footwear Science, 2017, 9, 111-119.	0.8	9
18	Influence of Compression and Stiffness Apparel on Vertical Jump Performance. Journal of Strength and Conditioning Research, 2016, 30, 1093-1101.	1.0	12

JOHN W WANNOP

#	Article	IF	CITATIONS
19	Forefoot bending stiffness, running economy and kinematics during overground running. Footwear Science, 2016, 8, 91-98.	0.8	32
20	The influence of forefoot bending stiffness of footwear on athletic injury and performance. Footwear Science, 2016, 8, 51-63.	0.8	38
21	The effect of translational and rotational traction on lower extremity joint loading. Journal of Sports Sciences, 2016, 34, 613-620.	1.0	11
22	Biomechanics research and sport equipment development. Sports Engineering, 2015, 18, 191-202.	0.5	27
23	Forefoot bending stiffness, running economy and kinematics during overground running. Footwear Science, 2015, 7, S11-S13.	0.8	14
24	Influence of forefoot bending stiffness on American football performance. Footwear Science, 2015, 7, S141-S142.	0.8	4
25	Effects of shoe bending stiffness and surface stiffness on lower extremity biomechanics during running. Footwear Science, 2015, 7, S4-S6.	0.8	5
26	Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements. Sports Biomechanics, 2015, 14, 351-360.	0.8	50
27	Shoe traction and surface compliance affect performance of soccer-related movements. Footwear Science, 2014, 6, 69-80.	0.8	31
28	Footwear traction and three-dimensional kinematics of level, downhill, uphill and cross-slope walking. Gait and Posture, 2014, 40, 118-122.	0.6	15
29	Softer and more resilient running shoe cushioning properties enhance running economy. Footwear Science, 2014, 6, 147-153.	0.8	81
30	The effect of lateral banking on the kinematics and kinetics of the lower extremity during lateral cutting movements. Human Movement Science, 2014, 33, 97-107.	0.6	12
31	Running shoe cushioning properties can influence oxygen consumption. Footwear Science, 2013, 5, S75-S76.	0.8	16
32	Effects of artificial turf on performance and ground contact kinetics during a sprint acceleration. Footwear Science, 2013, 5, S101-S103.	0.8	0
33	Footwear Traction and Lower Extremity Noncontact Injury. Medicine and Science in Sports and Exercise, 2013, 45, 2137-2143.	0.2	31
34	Influence of basketball shoe mass, traction and bending stiffness on athletic performance. Footwear Science, 2013, 5, S98-S100.	0.8	7
35	Traction of clogged golf footwear. Footwear Science, 2013, 5, 131-135.	0.8	1
36	The effect of normal load, speed and moisture on footwear traction. Footwear Science, 2012, 4, 37-43.	0.8	15

JOHN W WANNOP

#	ARTICLE	IF	CITATIONS
37	A small integrated lateral wedge does not alter knee joint moments during walking. Footwear Science, 2012, 4, 207-212.	0.8	6
38	Normalization of Ground Reaction Forces, Joint Moments, and Free Moments in Human Locomotion. Journal of Applied Biomechanics, 2012, 28, 665-676.	0.3	419
39	Footwear traction at different areas on artificial and natural grass fields. Sports Engineering, 2012, 15, 111-116.	0.5	19
40	Footwear Traction and Lower Extremity Joint Loading. American Journal of Sports Medicine, 2010, 38, 1221-1228.	1.9	41
41	Wear influences footwear traction properties in Canadian high school football. Footwear Science, 2009, 1, 121-127.	0.8	12