Kazunori Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3326210/publications.pdf

Version: 2024-02-01

79	1,193	17 h-index	32
papers	citations		g-index
80	80	80	1139
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chitosan Based Water-Resistant Adhesive. Analogy to Mussel Glue. Biomacromolecules, 2000, 1, 252-258.	2.6	198
2	Water Purification through Bioconversion of Phenol Compounds by Tyrosinase and Chemical Adsorption by Chitosan Beads. Biotechnology Progress, 2008, 21, 823-829.	1.3	97
3	Role of Hydrogen Bonding and Hydrophobic Interaction in the Volume Collapse of a Poly(ethylenimine) Gel. Langmuir, 1998, 14, 788-795.	1.6	64
4	Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. Biosensors and Bioelectronics, 2004, 20, 1134-1139.	5.3	60
5	Hydrophilic and adhesive properties of polyethylene plates grafted with hydrophilic monomers. Journal of Applied Polymer Science, 1992, 46, 1065-1085.	1.3	59
6	Retention and reusability of trypsin activity by covalent immobilization onto grafted polyethylene plates. Journal of Applied Polymer Science, 2003, 89, 3574-3581.	1.3	41
7	Removal ofp-Alkylphenols from Aqueous Solutions by Combined Use of Mushroom Tyrosinase and Chitosan Beads. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2467-2475.	0.6	41
8	Hydrophilic and adhesive properties of methacrylic acid-grafted polyethylene plates. Journal of Applied Polymer Science, 1992, 44, 993-1001.	1.3	35
9	Autohesive properties of polyolefins photografted with hydrophilic monomers. Journal of Applied Polymer Science, 2003, 87, 2244-2252.	1.3	34
10	Retention of activity of urease immobilized on grafted polymer films. Journal of Applied Polymer Science, 2006, 102, 4886-4896.	1.3	29
11	Membrane properties of porous and expanded poly(tetrafluoroethylene) films grafted with hydrophilic monomers and their permeation behavior. Journal of Applied Polymer Science, 1996, 61, 1899-1912.	1.3	28
12	Determination of optimum process parameters for peroxidaseâ€catalysed treatment of bisphenol A and application to the removal of bisphenol derivatives. Environmental Technology (United Kingdom), 2010, 31, 243-256.	1.2	28
13	Polyethylene Film Gels Prepared by Photograftings of Hydrophilic Monomers. Journal of Colloid and Interface Science, 1994, 162, 144-150.	5.0	24
14	Influence of Position of Substituent Groups on Removal of Chlorophenols and Cresols by Horseradish Peroxidase and Determination of Optimum Conditions. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2503-2510.	0.6	22
15	Improvement of autohesive and adhesive properties of polyethylene plates by photografting with glycidyl methacrylate. Journal of Applied Polymer Science, 2007, 103, 493-500.	1.3	20
16	Use of chitosan for removal of bisphenol a from aqueous solutions through quinone oxidation by polyphenol oxidase. Journal of Applied Polymer Science, 2012, 124, 796-804.	1.3	20
17	Membrane properties of polyethylene films photografted with hydrophilic monomers. Polymer Gels and Networks, 1994, 2, 323-331.	0.6	19
18	Adsorption and desorption properties of the chelating membranes prepared from the PE films. Journal of Applied Polymer Science, 2006, 99, 1895-1902.	1.3	17

#	Article	IF	CITATIONS
19	Application of enzymatically gelled chitosan solutions to water-resistant adhesives. Journal of Applied Polymer Science, 2007, 104, 1818-1827.	1.3	17
20	Application of DMAEMA-grafted expanded PTFE films to positively charged ultrafiltration membranes and their electrostatic sieve separation properties. Journal of Applied Polymer Science, 2001, 81, 1595-1604.	1.3	16
21	Soybean peroxidaseâ€catalyzed treatment and removal of BPA and bisphenol derivatives from aqueous solutions. Environmental Progress and Sustainable Energy, 2011, 30, 81-91.	1.3	16
22	Surface Modification and Autohesive Properties of Poly(tetrafluoroethylene) and Polyethylene by the Photografting Technique Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1998, 11, 263-270.	0.1	15
23	Application of chitosan solutions gelled by ⟨i⟩melB⟨/i⟩ tyrosinase to waterâ€resistant adhesives. Journal of Applied Polymer Science, 2008, 107, 2723-2731.	1.3	15
24	Removal of alkylphenols by the combined use of tyrosinase immobilized on ionâ€exchange resins and chitosan beads. Journal of Applied Polymer Science, 2010, 115, 137-145.	1.3	15
25	Use of polyethylene films photografted with 2â€(dimethylamino)ethyl methacrylate as a potential adsorbent for removal of chromium (<scp>VI</scp>) from aqueous medium. Journal of Applied Polymer Science, 2016, 133, .	1.3	15
26	Removal of bisphenol A and its derivatives from aqueous medium through laccase-catalyzed treatment enhanced by addition of polyethylene glycol. Environmental Technology (United Kingdom), 2016, 37, 1733-1744.	1.2	15
27	Removal of Linear and Branched p-Alkylphenols from Aqueous Solution by Combined Use of melB Tyrosinase and Chitosan Beads. Journal of Polymers and the Environment, 2009, 17, 95-102.	2.4	14
28	Adsorption and desorption properties of grafted polyethylene films modified with polyethylenimine chains. Journal of Applied Polymer Science, 2006, 102, 5965-5976.	1.3	13
29	Electrotransport of organic electrolytes through 2-(dimethylamino)ethyl methacrylate-grafted polyethylene films and their separation and concentration. Journal of Applied Polymer Science, 2003, 89, 2535-2544.	1.3	12
30	Adsorption and desorption properties of cationic polyethylene film gels to organic anions and their regeneration. Journal of Applied Polymer Science, 2006, 99, 381-391.	1.3	12
31	Estimation of surface properties of grafted layers formed on low―and highâ€density polyethylene plates by photografting of methacrylic acid and acrylic acid at different monomer concentrations and temperatures. Journal of Applied Polymer Science, 2012, 125, 2614-2625.	1.3	12
32	Autohesion of Polyethylene Plates by the Photoinduced Grafting of Methacrylamide. ACS Symposium Series, 2003, , 511-521.	0.5	11
33	Two-step grafting of 2-hydroxyethyl methacrylate (HEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) onto a polyethylene plate for enhancement of Cr(VI) ion adsorption. Environmental Technology (United Kingdom), 2019, 40, 855-869.	1.2	11
34	Surface Hydrophilization of PTFE Plates by Oxygen Plasma Pre-treatment and Photografting-Dependence on Solvent Composition of Monomer Solution Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2005, 18, 257-262.	0.1	9
35	Use of chitosan for removal of bisphenol A and bisphenol derivatives through tyrosinaseâ€catalyzed quinone oxidation. Journal of Applied Polymer Science, 2010, 118, 721-732.	1.3	9
36	Adhesion of polyethylene plates photografted with methacrylic acid and acrylic acid with enzymatically modified chitosan solutions and Xâ€ray photoelectron spectroscopy analysis of failed surfaces. Journal of Applied Polymer Science, 2011, 121, 939-950.	1.3	9

#	Article	IF	Citations
37	Low Temperature Decomposition of Polystyrene. Applied Sciences (Switzerland), 2020, 10, 5100.	1.3	9
38	Thermo-responsive Properties of Surface Layer of Poly(tetrafluoroethylene) Plates Grafted with N-Isopropylacrylamide by Oxygen Plasma-treatment and Photografting Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2002, 15, 335-340.	0.1	8
39	Adhesion of surfaceâ€grafted lowâ€density polyethylene plates with enzymatically modified chitosan solutions. Journal of Applied Polymer Science, 2009, 113, 3963-3971.	1.3	8
40	Use of chitosan for removal of naphthols through tyrosinase atalyzed quinone oxidation. Journal of Applied Polymer Science, 2012, 125, E42.	1.3	8
41	Surface Properties of Flat Poly(tetrafluoroethylene) Plates Grafted with Poly(N-isopropylacrylamide) Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1997, 1997, 575-581.	0.1	7
42	Removal of Linear and Branched Alkylphenols from Aqueous Solutions with Horseradish Peroxidase. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1368-1371.	0.6	7
43	Surface Analysis of PTFE Plates Photografted with Thermosensitive Poly (N-Isopropyl acrylamide) after Oxygen Plasma Pre-treatment. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 201-206.	0.1	6
44	Adhesion of ultrahigh molecular weight polyethylene plates photografted with hydrophilic monomers and evaluation of failure location by Xâ€ray photoelectron spectroscopy. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
45	Separation and Concentration of Anionic Organic Electrolytes by Electrotransport through Polyethylene Films Grafted with Cationic Polymers. ACS Symposium Series, 1999, , 16-24.	0.5	5
46	Adsorption and desorption properties of expanded poly(tetrafluoroethylene) films grafted with DMAEMA and their regeneration. Journal of Applied Polymer Science, 2007, 104, 3301-3308.	1.3	5
47	Preparation of Expanded Poly (tetrafluoroethylene) Films Grafted by Oxygen Plasma Pretreatment and Immobilization of Lipase. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 49-54.	0.1	4
48	Adhesion of grafted polypropylene plates with enzymatically modified chitosan solutions and analysis of failed surfaces by Xâ€ray photoelectron spectroscopy. Journal of Applied Polymer Science, 2013, 130, 1369-1376.	1.3	4
49	Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system. Environmental Technology (United) Tj ETQq1 1 C).78 :4:3 14 r	rgB₮/Overloc
50	Thermosensitivity of Copoly(N-isopropylacrylamide/acrylamide) Hydrogels and Their Interaction with Methylene Blue Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1993, 1993, 380-388.	0.1	3
51	Preparation of Photografted PTFE Films by Oxygen Plasma Pre-treatment and Application to DDS by Use of Enzyme. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 165-170.	0.1	3
52	Construction of DDS Applying ePTFE Films Grafted with Poly(Acrylic Acid) by the Use of Plasma-Initiated Graft-polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 225-230.	0.1	3
53	Removal of naphthols and analogues by the combined use of an oxidoreductase polyphenol oxidase and a biopolymer chitosan from aqueous solutions. Environmental Technology (United Kingdom), 2014, 35, 2910-2919.	1.2	3
54	Functionalization of Halloysite Nanotubes with Poly(amidoamine) Dendrimers and Their Application to Adsorptive Removal of Hexavalent Chromium. Transactions of the Materials Research Society of Japan, 2019, 44, 171-176.	0.2	3

#	Article	lF	CITATIONS
55	Hexavalent Cr ion adsorption and desorption behaviour of expanded poly(tetrafluoro)ethylene films grafted with 2-(dimethylamino)ethyl methacrylate. Environmental Technology (United Kingdom), 2021, 42, 1885-1898.	1.2	3
56	Development of recoverable adsorbents for Cr(VI) ions by grafting of a dimethylamino group-containing monomer on polyethylene substrate and subsequent quaternization. Environmental Technology (United Kingdom), 2021, , 1-14.	1.2	3
57	Kinetic, Isotherm, and Equilibrium Investigation of Cr(VI) Ion Adsorption on Amine-Functionalized Porous Silica Beads. Polymers, 2022, 14, 2104.	2.0	3
58	One Proposal for Increase in the Grafted Amount of PNIPAAm onto PTFE Plate by Combination Use of Plasma-treatment and Photografting. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 491-496.	0.1	2
59	Polymerization of Methyl Methacrylate Initiated by Atmospheric Pressure Plasma Jet. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 461-464.	0.1	2
60	Enhancement of Cr(VI) ion adsorption by two-step grafting of methacrylamide (MAAm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) onto polyethylene plate. Environmental Technology (United Kingdom), 2020, , 1-14.	1,2	2
61	Wettabilities and Adhesive/Autohesive Properties of Poly(Tetrafluoroethylene) Surfaces Photografted with Hydrophilic Monomers., 1997,, 173-194.		2
62	Evaluation of Adsorption Behavior of Chromium (VI) on 2-(Dimethylamino)ethyl Methacrylate Grafted Polyethylene Meshes. Transactions of the Materials Research Society of Japan, 2020, 45, 23-30.	0.2	2
63	Preparation of Grafted Expanded Poly(tetrafluoroethylene) Films for Immobilization of Urease Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2001, 14, 111-116.	0.1	1
64	Immobilization of Tyrosinase on Ion Exchange Resins and Application of Removal of a Phenol Compound. Kobunshi Ronbunshu, 2008, 65, 104-107.	0.2	1
65	Thermo-responsive Property of PTFE-g-P(NIPAAm-co-HIPAAm) Plate. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 585-590.	0.1	1
66	Preparation of grafted ePTFE Film Targeting Application for Drug-Release Device in the Body. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 519-522.	0.1	1
67	Membrane properties of porous and expanded poly(tetrafluoroethylene) films grafted with hydrophilic monomers and their permeation behavior. Journal of Applied Polymer Science, 1996, 61, 1899-1912.	1.3	1
68	Application of DMAEMA-grafted expanded PTFE films to positively charged ultrafiltration membranes and their electrostatic sieve separation properties. , 2001, 81, 1595.		1
69	Cationic Polyelectrolyte Gel from Poly(ethylenimine). ACS Symposium Series, 1993, , 493-498.	0.5	0
70	Thermosensitive Properties of Flat Poly(tetrafluoroethylene) Plates Surface-Grafted with N-Isopropylacrylamide and 2-(Dimethylamino)Ethyl Methacrylate. ACS Symposium Series, 1999, , 311-321.	0.5	0
71	Application of DMAEMA-grafted expanded PTFE films to positively charged ultrafiltration membranes and their electrostatic sieve separation properties. Journal of Applied Polymer Science, 2001, 82, 782-782.	1.3	0
72	Improvement in adhesive-free adhesion by the use of electrostatic interactions between polymer chains grafted onto polyethylene plates. Journal of Applied Polymer Science, 2006, 101, 2632-2638.	1.3	0

#	Article	IF	CITATIONS
73	Removal of Bisphenol A by a Combination of Mushroom Tyrosinase and Chitosan Beads. Kobunshi Ronbunshu, 2008, 65, 108-111.	0.2	O
74	Preparation of PAAc Grafted ePTFE Films Immobilized with Enzymes Using for DDS. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 251-256.	0.1	0
75	Thermo-responsive Property of PTFE-g-P(NIPAAm-co-HIPAAm) Films Prepared by the use of Ar Plasma Treatment. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2011, 24, 453-458.	0.1	0
76	Photografting of Methacrylic Acid onto Plasma-pretreated Poly(tetrafluoroethylene) Plates and Enhancement of Their Adhesivity. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 449-454.	0.1	0
77	Removal of Linear and Branched Alkylphenols with the Combined Use of Polyphenol Oxidase and Chitosan. Polymers, 2019, 11, 931.	2.0	O
78	Surface Analysis of PTFE Plates Photografted with Thermosensitive Poly (N-Isopropyl acrylamide) after Oxygen Plasma Pre-treatment. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 2, 201-206.	0.1	0
79	Improvement of Adhesive Strength of Poly(tetrafluoroethylene) Plates through Oxygen Plasma Treatment and Subsequent Photografting of Methacrylic Acid. International Journal of Materials Science and Applications, 2018, 7, 18.	0.1	0