
Xianke Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/332612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Image-Based Rapid RUL Prediction for Li-Ion Batteries Using a Capsule Network and Transfer Learning. IEEE Transactions on Transportation Electrification, 2023, 9, 958-967.	7.8	9
2	Q-Learning-Based Supervisory Control Adaptability Investigation for Hybrid Electric Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 6797-6806.	8.0	20
3	Economic Control for a Residential Photovoltaic-Battery System by Combining Stochastic Model Predictive Control and Improved Correction Strategy. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	5
4	Multi-fault Detection and Isolation for Lithium-Ion Battery Systems. IEEE Transactions on Power Electronics, 2022, 37, 971-989.	7.9	59
5	An Enhanced Electro-Thermal Model for EV Battery Packs Considering Current Distribution in Parallel Branches. IEEE Transactions on Power Electronics, 2022, 37, 1027-1043.	7.9	16
6	State of health prognostics for series battery packs: A universal deep learning method. Energy, 2022, 238, 121857.	8.8	58
7	Battery Health-Aware and Deep Reinforcement Learning-Based Energy Management for Naturalistic Data-Driven Driving Scenarios. IEEE Transactions on Transportation Electrification, 2022, 8, 948-964.	7.8	30
8	The role and application of convex modeling and optimization in electrified vehicles. Renewable and Sustainable Energy Reviews, 2022, 153, 111796.	16.4	16
9	A control strategy for cabin temperature of electric vehicle considering health ventilation for lowering virus infection. International Journal of Thermal Sciences, 2022, 172, 107371.	4.9	9
10	Increasing energy utilization of battery energy storage via active multivariable fusion-driven balancing. Energy, 2022, 243, 122772.	8.8	6
11	Predictive energy management for plug-in hybrid electric vehicles considering electric motor thermal dynamics. Energy Conversion and Management, 2022, 251, 115022.	9.2	35
12	Data-Driven Battery State of Health Estimation Based on Random Partial Charging Data. IEEE Transactions on Power Electronics, 2022, 37, 5021-5031.	7.9	106
13	An Online SOC-SOTD Joint Estimation Algorithm for Pouch Li-Ion Batteries Based on Spatio-Temporal Coupling Correction Method. IEEE Transactions on Power Electronics, 2022, 37, 7370-7386.	7.9	14
14	Multi-Objective Design Optimization of a Novel Dual-Mode Power-Split Hybrid Powertrain. IEEE Transactions on Vehicular Technology, 2022, 71, 282-296.	6.3	14
15	Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification. Energy Storage Materials, 2022, 45, 952-968.	18.0	58
16	Lifetime and Aging Degradation Prognostics for Lithium-ion Battery Packs Based on a Cell to Pack Method. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	3.7	30
17	Battery health estimation with degradation pattern recognition and transfer learning. Journal of Power Sources, 2022, 525, 231027.	7.8	110
18	Real-Time Multiobjective Energy Management for Electrified Powertrains: A Convex Optimization-Driven Predictive Approach. IEEE Transactions on Transportation Electrification, 2022, 8, 3139-3150.	7.8	8

#	Article	IF	CITATIONS
19	Highway Decision-Making and Motion Planning for Autonomous Driving via Soft Actor-Critic. IEEE Transactions on Vehicular Technology, 2022, 71, 4706-4717.	6.3	29
20	Battery health evaluation using a short random segment of constant current charging. IScience, 2022, 25, 104260.	4.1	23
21	A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications. Proceedings of the IEEE, 2022, 110, 735-753.	21.3	47
22	Convex optimization-based predictive and bi-level energy management for plug-in hybrid electric vehicles. Energy, 2022, 257, 124672.	8.8	12
23	A Neural Network Based Method for Thermal Fault Detection in Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics, 2021, 68, 4068-4078.	7.9	52
24	Remaining Useful Life Prediction Using a Novel Feature-Attention-Based End-to-End Approach. IEEE Transactions on Industrial Informatics, 2021, 17, 1197-1207.	11.3	133
25	A Control-Oriented Electrothermal Model for Pouch-Type Electric Vehicle Batteries. IEEE Transactions on Power Electronics, 2021, 36, 5530-5544.	7.9	26
26	A Reduced-Order Electrochemical Model for All-Solid-State Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 464-473.	7.8	55
27	Dimensioning and Power Management of Hybrid Energy Storage Systems for Electric Vehicles With Multiple Optimization Criteria. IEEE Transactions on Power Electronics, 2021, 36, 5545-5556.	7.9	34
28	General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1295-1306.	5.8	108
29	Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends. Renewable and Sustainable Energy Reviews, 2021, 138, 110480.	16.4	170
30	Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning. IEEE Transactions on Transportation Electrification, 2021, 7, 382-398.	7.8	156
31	Optimal Discretization Approach to the Enhanced Single-Particle Model for Li-Ion Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 369-381.	7.8	17
32	A Particle Filter and Long Short-Term Memory Fusion Technique for Lithium-Ion Battery Remaining Useful Life Prediction. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2021, 143, .	1.6	22
33	Predictive Battery Health Management With Transfer Learning and Online Model Correction. IEEE Transactions on Vehicular Technology, 2021, 70, 1269-1277.	6.3	110
34	Design of Cylindrical Thermal Dummy Cell for Development of Lithium-Ion Battery Thermal Management System. Energies, 2021, 14, 1357.	3.1	5
35	Improving Ride Comfort and Fuel Economy of Connected Hybrid Electric Vehicles Based on Traffic Signals and Real Road Information. IEEE Transactions on Vehicular Technology, 2021, 70, 3101-3112.	6.3	51
36	A Voltage Fault Detection Method Enabled by A Recurrent Neural Network and Residual Threshold		1

Monitor for Lithium-ion Batteries. , 2021, , .

#	Article	IF	CITATIONS
37	Sensitivity Analysis and Joint Estimation of Parameters and States for All-Solid-State Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 1314-1323.	7.8	49
38	Improving the Air-Cooling Performance for Battery Packs via Electrothermal Modeling and Particle Swarm Optimization. IEEE Transactions on Transportation Electrification, 2021, 7, 1285-1302.	7.8	10
39	Powertrain Design and Control in Electrified Vehicles: A Critical Review. IEEE Transactions on Transportation Electrification, 2021, 7, 1990-2009.	7.8	54
40	Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries. Progress in Energy and Combustion Science, 2021, 87, 100953.	31.2	117
41	Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data. Energy, 2021, 234, 121266.	8.8	73
42	Research directions for next-generation battery management solutions in automotive applications. Renewable and Sustainable Energy Reviews, 2021, 152, 111695.	16.4	24
43	Joint Estimation of Inconsistency and State of Health for Series Battery Packs. Automotive Innovation, 2021, 4, 103-116.	5.1	32
44	An online health-conscious enhanced charging and active balancing strategy for lithium-ion battery packs. Journal of Energy Storage, 2021, 44, 103368.	8.1	1
45	Battery Lifetime Prognostics. Joule, 2020, 4, 310-346.	24.0	570
46	Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles. Journal of Power Sources, 2020, 450, 227638.	7.8	63
47	Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures. IEEE Industrial Electronics Magazine, 2020, 14, 65-91.	2.6	260
48	Battery aging- and temperature-aware predictive energy management for hybrid electric vehicles. Journal of Power Sources, 2020, 473, 228568.	7.8	68
49	An improved resistance-based thermal model for prismatic lithium-ion battery charging. Applied Thermal Engineering, 2020, 180, 115794.	6.0	24
50	A Data-Driven Power Consumption Model for Electric UAVs. , 2020, , .		2
51	Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health. Applied Energy, 2020, 268, 115028.	10.1	33
52	Ensemble Reinforcement Learning-Based Supervisory Control of Hybrid Electric Vehicle for Fuel Economy Improvement. IEEE Transactions on Transportation Electrification, 2020, 6, 717-727.	7.8	52
53	Designing Multi-Mode Power Split Hybrid Electric Vehicles Using the Hierarchical Topological Graph Theory. IEEE Transactions on Vehicular Technology, 2020, 69, 7159-7171.	6.3	15
54	Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios. Applied Energy, 2020, 271, 115233.	10.1	55

#	Article	IF	CITATIONS
55	Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression. Energy, 2020, 205, 118000.	8.8	217
56	An Enhanced Online Temperature Estimation for Lithium-Ion Batteries. IEEE Transactions on Transportation Electrification, 2020, 6, 375-390.	7.8	42
57	Optimal Multistage Charging of NCA/Graphite Lithium-Ion Batteries Based on Electrothermal-Aging Dynamics. IEEE Transactions on Transportation Electrification, 2020, 6, 427-438.	7.8	56
58	A Practical and Comprehensive Evaluation Method for Series-Connected Battery Pack Models. IEEE Transactions on Transportation Electrification, 2020, 6, 391-416.	7.8	27
59	Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering. Applied Energy, 2020, 262, 114569.	10.1	96
60	Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios. Energy, 2020, 196, 117101.	8.8	77
61	An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction. Journal of Intelligent Manufacturing, 2020, 31, 1511-1529.	7.3	25
62	Health Prognosis for Electric Vehicle Battery Packs: A Data-Driven Approach. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2622-2632.	5.8	109
63	An MPC-Based Control Strategy for Electric Vehicle Battery Cooling Considering Energy Saving and Battery Lifespan. IEEE Transactions on Vehicular Technology, 2020, 69, 14657-14673.	6.3	41
64	A review of equalization strategies for series battery packs: variables, objectives, and algorithms. Renewable and Sustainable Energy Reviews, 2019, 116, 109464.	16.4	115
65	A Novel Deep Learning-Based Encoder-Decoder Model for Remaining Useful Life Prediction. , 2019, , .		23
66	Online Estimation of Diffusion-Induced Stress in Cathode Particles of Li-Ion Batteries. , 2019, , .		3
67	A framework for charging strategy optimization using a physics-based battery model. Journal of Applied Electrochemistry, 2019, 49, 779-793.	2.9	18
68	Real-Time Prediction of Anode Potential in Li-Ion Batteries Using Long Short-Term Neural Networks for Lithium Plating Prevention. Journal of the Electrochemical Society, 2019, 166, A1893-A1904.	2.9	17
69	On state estimation of all solid-state batteries. Electrochimica Acta, 2019, 317, 663-672.	5.2	15
70	A Comparative Study of Control-Oriented Thermal Models for Cylindrical Li-Ion Batteries. IEEE Transactions on Transportation Electrification, 2019, 5, 1237-1253.	7.8	84
71	A Framework for Optimization on Battery Cycle Life. Journal of the Electrochemical Society, 2018, 165, A3380-A3388.	2.9	11
72	Physics-Based and Control-Oriented Modeling of Diffusion-Induced Stress in Li-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A2255-A2266.	2.9	11

#	Article	IF	CITATIONS
73	Health conscious fast charging of Li-ion batteries via a single particle model with aging mechanisms. Journal of Power Sources, 2018, 400, 305-316.	7.8	86
74	Optimal Charging Of Li-Ion Batteries Based On An Electrolyte Enhanced Single Particle Model. , 2018, , .		1
75	A battery model that enables consideration of realistic anisotropic environment surrounding an active material particle and its application. Journal of Power Sources, 2017, 357, 220-229.	7.8	15
76	Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion. Journal of the Electrochemical Society, 2015, 162, A1798-A1808.	2.9	130
77	Oxygen Vacancies Lead to Loss of Domain Order, Particle Fracture, and Rapid Capacity Fade in Lithium Manganospinel (LiMn ₂ O ₄) Batteries. ACS Applied Materials & Interfaces, 2014, 6, 10849-10857.	8.0	70
78	A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery. Journal of Power Sources, 2014, 268, 482-490.	7.8	115
79	A Comprehensive Capacity Fade Model and Analysis for Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1701-A1710.	2.9	194
80	Energy Management Options for an Electric Vehicle with Hydraulic Regeneration System. , 2011, , .		10
81	Dynamics, Sensing, and Control of a Thin-Film Piezoelectric Vertical Micro-Stage. , 2010, , .		1
82	Large displacement vertical translational actuator based on piezoelectric thin films. Journal of Micromechanics and Microengineering, 2010, 20, 075016.	2.6	61
83	Optimization of Rule-Based Control Strategy for a Hydraulic-Electric Hybrid Light Urban Vehicle Based on Dynamic Programming. SAE International Journal of Alternative Powertrains, 0, 1, 249-259.	0.8	20
84	Eco-Driving Control of Connected and Automated Hybrid Electric Vehicles on Multi-lane Roads Using Model Predictive Control. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 1748-1756.	2.0	2