Pedro J Carvalho

List of Publications by Citations

Source: https://exaly.com/author-pdf/3325954/pedro-j-carvalho-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 102
 5,884
 38
 76

 papers
 citations
 h-index
 g-index

 105
 6,354
 4
 5.7

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
102	Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. Journal of Colloid and Interface Science, 2007 , 314, 621-30	9.3	369
101	High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids. <i>Journal of Chemical & Data</i> , 2007, 52, 80-88	2.8	357
100	Mutual solubilities of water and hydrophobic ionic liquids. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 13082-9	3.4	347
99	Mutual solubilities of water and the [C(n)mim][Tf(2)N] hydrophobic ionic liquids. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 1604-10	3.4	289
98	PII Measurements of Imidazolium-Based Ionic Liquids. <i>Journal of Chemical & Data</i> , 2007, 52, 1881-1888	2.8	257
97	Thermophysical Characterization of Ionic Liquids Able To Dissolve Biomass. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 4813-4822	2.8	254
96	Densities and Derived Thermodynamic Properties of Imidazolium-, Pyridinium-, Pyrrolidinium-, and Piperidinium-Based Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 805-811	2.8	216
95	Effect of Water on the Viscosities and Densities of 1-Butyl-3-methylimidazolium Dicyanamide and 1-Butyl-3-methylimidazolium Tricyanomethane at Atmospheric Pressure Journal of Chemical & Engineering Data, 2010, 55, 645-652	2.8	200
94	Viscosity of (C2II14) 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids in an extended temperature range. <i>Fluid Phase Equilibria</i> , 2011 , 301, 22-32	2.5	191
93	Specific solvation interactions of CO2 on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 6803-12	3.4	186
92	Surface Tensions for the 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. <i>Journal of Chemical & amp; Engineering Data</i> , 2008 , 53, 1346-1350	2.8	186
91	Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 202-11	3.4	168
90	High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids. <i>Journal of Supercritical Fluids</i> , 2009 , 50, 105-111	4.2	149
89	Thermophysical properties of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 948-957	2.9	140
88	High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. <i>Journal of Supercritical Fluids</i> , 2010 , 52, 258-265	4.2	138
87	Measurements and Correlation of High-Pressure Densities of Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2008, 53, 1914-1921	2.8	123
86	High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. <i>Journal of Supercritical Fluids</i> , 2009 , 48, 99-107	4.2	121

(2013-2012)

85	Predictive methods for the estimation of thermophysical properties of ionic liquids. <i>RSC Advances</i> , 2012 , 2, 7322	3.7	114
84	Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations. <i>Journal of Chemical Physics</i> , 2014 , 140, 064505	3.9	109
83	Structural and Positional Isomerism Influence in the Physical Properties of Pyridinium NTf2-Based Ionic Liquids: Pure and Water-Saturated Mixtures <i>Journal of Chemical & Dournal of Chemical & Dournal Of Chemical & Dournal Of Chemical & Dournal Dournal Data</i> , 2010, 55, 4514-4520	2.8	104
82	Solubility of Water in Tetradecyltrihexylphosphonium-Based Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 2378-2382	2.8	101
81	High pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids. <i>Journal of Supercritical Fluids</i> , 2011 , 56, 224-230	4.2	93
80	On the Nonideality of CO2 Solutions in Ionic Liquids and Other Low Volatile Solvents. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 774-780	6.4	90
79	The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities. <i>Energy and Environmental Science</i> , 2011 , 4, 4614	35.4	82
78	Thermophysical properties of sulfonium- and ammonium-based ionic liquids. <i>Fluid Phase Equilibria</i> , 2014 , 381, 36-45	2.5	80
77	Surface Tensions of Bis(trifluoromethylsulfonyl)imide Anion-Based Ionic Liquids. <i>Journal of Chemical & Chemic</i>	2.8	78
76	Vaporlliquid Equilibria of Water + Alkylimidazolium-Based Ionic Liquids: Measurements and Perturbed-Chain Statistical Associating Fluid Theory Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 3737-3748	3.9	69
75	Dispelling some myths about the CO2 solubility in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14757-71	3.6	68
74	Densities, Viscosities and Derived Thermophysical Properties of Water-Saturated Imidazolium-Based Ionic Liquids. <i>Fluid Phase Equilibria</i> , 2016 , 407, 188-196	2.5	54
73	Surface Tension of Liquid Fluorocompounds. <i>Journal of Chemical & Data</i> , 2006, 51, 182	202.1882	4 52
72	The effect of the cation aromaticity upon the thermophysical properties of piperidinium- and pyridinium-based ionic liquids. <i>Fluid Phase Equilibria</i> , 2014 , 375, 80-88	2.5	51
71	Thermophysical properties of phosphonium-based ionic liquids. <i>Fluid Phase Equilibria</i> , 2015 , 400, 103-1	13 .5	50
70	Thermophysical Properties of Glycols and Glymes. <i>Journal of Chemical & Data</i> , 2015, 60, 3721-3737	2.8	45
69	Vapor-Liquid Equilibria of Imidazolium Ionic Liquids with Cyano Containing Anions with Water and Ethanol. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 10287-303	3.4	41
68	A new microebulliometer for the measurement of the vapor lquid equilibrium of ionic liquid systems. <i>Fluid Phase Equilibria</i> , 2013 , 354, 156-165	2.5	39

67	High pressure separation of greenhouse gases from air with 1-ethyl-3-methylimidazolium methyl-phosphonate. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 19, 299-309	4.2	38
66	Carbon dioxide solubility in aqueous solutions of NaCl: Measurements and modeling with electrolyte equations of state. <i>Fluid Phase Equilibria</i> , 2015 , 388, 100-106	2.5	38
65	Chameleonic behavior of ionic liquids and its impact on the estimation of solubility parameters. Journal of Physical Chemistry B, 2011 , 115, 12879-88	3.4	38
64	Measurements and Correlation of High-Pressure Densities of Phosphonium Based Ionic Liquids. Journal of Chemical & Description of High-Pressure Densities of Phosphonium Based Ionic Liquids.	2.8	37
63	Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2016 , 97, 354-361	2.9	35
62	Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2014 , 68, 221-234	2.9	34
61	Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 213-219	2.9	34
60	Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids. <i>Langmuir</i> , 2016 , 32, 6130-9	4	33
59	Non-ideality of Solutions of NH3, SO2, and H2S in Ionic Liquids and the Prediction of Their Solubilities Using the Flory Huggins Model. <i>Energy & Dodg</i> , 24, 6662-6666	4.1	33
58	New measurements and modeling of high pressure thermodynamic properties of glycols. <i>Fluid Phase Equilibria</i> , 2017 , 436, 113-123	2.5	29
57	High pressure solubility of CH4, N2O and N2 in 1-butyl-3-methylimidazolium dicyanamide: Solubilities, selectivities and soft-SAFT modeling. <i>Journal of Supercritical Fluids</i> , 2016 , 110, 56-64	4.2	29
56	Green solvents for CO2 capture. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 25-30	7.9	29
55	PowellSnakes II: a fast Bayesian approach to discrete object detection in multi-frequency astronomical data sets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 1384-1400	4.3	28
54	Toluene/n-Heptane Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids: Experimental and CPA EoS Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 14242-14253	3.9	24
53	Solubility of carbon dioxide in encapsulated ionic liquids. <i>Separation and Purification Technology</i> , 2018 , 196, 41-46	8.3	23
52	Surface Tensions of Ionic Liquids: Non-Regular Trend Along the Number of Cyano Groups. <i>Fluid Phase Equilibria</i> , 2016 , 409, 458-465	2.5	22
51	Thermodynamic characterization of deep eutectic solvents at high pressures. <i>Fluid Phase Equilibria</i> , 2019 , 500, 112249	2.5	21
50	High pressure density and solubility for the CO2+1-ethyl-3-methylimidazolium ethylsulfate system. Journal of Supercritical Fluids, 2014 , 88, 46-55	4.2	20

49	Thermophysical properties of two ammonium-based protic ionic liquids. <i>Journal of Solution Chemistry</i> , 2015 , 44, 703-717	1.8	19
48	A methodology to parameterize SAFT-type equations of state for solid precursors of deep eutectic solvents: the example of cholinium chloride. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 15046-15061	3.6	17
47	Volumetric and acoustical properties of aqueous mixtures of N-methyl-2-hydroxyethylammonium propionate at T=(298.15 to 333.15)K. <i>Journal of Chemical Thermodynamics</i> , 2015 , 88, 44-60	2.9	17
46	New Experimental Data and Modeling of Glymes: Toward the Development of a Predictive Model for Polyethers. <i>Industrial & Development of a Predictive Model Polyethers</i> . <i>Industrial & Development of a Predictive Model Polyethers</i> . <i>Industrial & Development of a Predictive Model Polyethers</i> .	3.9	16
45	Non-Ideality in Thymol + Menthol Type V Deep Eutectic Solvents. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2203-2211	8.3	15
44	Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts. <i>Journal of Chemical Physics</i> , 2018 , 148,	3.9	14
43	Volumetric and acoustical properties of aqueous mixtures of N-methyl-2-hydroxyethylammonium butyrate and N-methyl-2-hydroxyethylammonium pentanoate at T = (298.15 to 333.15) K. <i>Journal of Chemical Thermodynamics</i> , 2016 , 97, 191-205	2.9	14
42	Vapor Liquid Equilibria of Binary Mixtures of 1-Butyl-3-methylimidazolium Triflate (CmimTfO) and Molecular Solvents: n-Alkyl Alcohols and Water. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 6017-6032	3.4	13
41	Selection and characterization of non-ideal ionic liquids mixtures to be used in CO2 capture. <i>Fluid Phase Equilibria</i> , 2020 , 518, 112621	2.5	13
40	Separation of benzene from methylcycloalkanes by extractive distillation with cyano-based ionic liquids: Experimental and CPA EoS modelling. <i>Separation and Purification Technology</i> , 2020 , 234, 116128	3 ^{8.3}	13
39	High-pressure solubility of CO2 in glymes. <i>Fuel</i> , 2018 , 219, 120-125	7.1	12
38	Integrative platform for the selective recovery of intracellular carotenoids and lipids from Rhodotorula glutinis CCT-2186 yeast using mixtures of bio-based solvents. <i>Green Chemistry</i> , 2020 , 22, 8478-8494	10	10
37	Reverse osmosis performance on stripped phenolic sour water treatment - A study on the effect of oil and grease and osmotic pressure. <i>Journal of Environmental Management</i> , 2020 , 261, 110229	7.9	9
36	Influence of temperature and pressure on the density and speed of sound of 2-hydroxyethylammonium propionate ionic liquid. <i>Journal of Chemical Thermodynamics</i> , 2018 , 122, 183-	193	9
35	High Pressure Phase Behavior of Carbon Dioxide in Carbon Disulfide and Carbon Tetrachloride. Journal of Chemical & Engineering Data, 2011, 56, 2786-2792	2.8	9
34	Hollow Fibers with Encapsulated Green Amino Acid-Based Ionic Liquids for Dehydration. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 17763-17771	8.3	9
33	Measurement and Modeling of Isobaric Vaporliquid Equilibrium of Water + Glycols. <i>Journal of Chemical & Data</i> , 2018 , 63, 2394-2401	2.8	8
32	Toward Modeling the Aromatic/Aliphatic Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids Using CPA EoS. <i>Industrial & District Communication Communicatio</i>	3.9	7

31	Compact Source Detection in Multichannel Microwave Surveys: From SZ Clusters to Polarized Sources. <i>Advances in Astronomy</i> , 2012 , 2012, 1-14	0.9	7
30	Encapsulated Amino-Acid-Based Ionic Liquids for CO2 Capture. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 3158-3166	2.3	7
29	Development of a robust soft-SAFT model for protic ionic liquids using new high-pressure density data. <i>Fluid Phase Equilibria</i> , 2021 , 539, 113036	2.5	7
28	Impact of water on the [C4C1im][Ac] ability for the CO2/CH4 separation. <i>Journal of CO2 Utilization</i> , 2019 , 31, 115-123	7.6	6
27	Surface crystallization of ionic liquid crystals. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 17792-1780	0 3.6	6
26	Influence of temperature and pressure on the density and speed of sound of N-ethyl-2-hydroxyethylammonium propionate ionic liquid. <i>Journal of Chemical Thermodynamics</i> , 2019 , 131, 303-313	2.9	6
25	Liquid Diquid Equilibrium and Extraction Performance of Aqueous Biphasic Systems Composed of Water, Cholinium Carboxylate Ionic Liquids and K2CO3. <i>Journal of Chemical & Data</i> , 2019 , 64, 4946-4955	2.8	5
24	Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State. <i>Industrial & Equations of State S</i>	3.9	5
23	Binary Mixtures of Ionic Liquids in Aqueous Solution: Towards an Understanding of their Salting-In/Salting-Out Phenomena. <i>Journal of Solution Chemistry</i> , 2019 , 48, 983-991	1.8	5
22	Evaluation of the solvent structural effect upon the vapor []quid equilibrium of [C4C1im][Cl][+ alcohols. <i>Fluid Phase Equilibria</i> , 2017 , 440, 36-44	2.5	4
21	High pressure density of tricyanomethanide-based ionic liquids: Experimental and PC-SAFT modelling. <i>Fluid Phase Equilibria</i> , 2020 , 520, 112652	2.5	4
20	Isobaric vapor-liquid equilibrium of water + glymes binary mixtures: Experimental measurements and molecular thermodynamic modelling. <i>Fluid Phase Equilibria</i> , 2020 , 513, 112547	2.5	4
19	Experimental measurements and modeling of CO2 solubility in sunflower, castor and rapeseed oils. Journal of Supercritical Fluids, 2013 , 82, 191-199	4.2	4
18	. Industrial & Engineering Chemistry Research, 2020 , 59, 15058-15068	3.9	4
17	Solubility of H2S in ammonium-based ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2021 , 154, 106	32.6	4
16	The impact of oligomeric anions on the speciation of protic ionic liquids. <i>Fluid Phase Equilibria</i> , 2021 , 531, 112919	2.5	4
15	Study of the partition of sodium diclofenac and norfloxacin in aqueous two-phase systems based on copolymers and dextran. <i>Fluid Phase Equilibria</i> , 2021 , 530, 112868	2.5	4
14	Sunyaev Z el D ovich profile fitting with joint AMI-Planck analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 2116-2128	4.3	3

LIST OF PUBLICATIONS

13	Infinite Dilution Activity Coefficients in the Smectic and Isotropic Phases of Tetrafluoroborate-Based Ionic Liquids. <i>Journal of Chemical & Ch</i>	96 ^{2.8}	3	
12	Physical modelling of galaxy clusters detected by thePlancksatellite. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3529-3544	4.3	3	
11	Pilot scale reverse osmosis refinery wastewater treatment has techno-economical and sustainability assessment. <i>Environmental Science: Water Research and Technology</i> , 2021 , 7, 549-561	4.2	2	
10	High-Pressure Density of Bis(1-alkyl-3-methylimidazolium) Tetraisothiocyanatocobaltate Ionic Liquids: Experimental and PC-SAFT with Volume-Shift Modeling. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 4827-4833	2.8	1	
9	The excess volumes of protic ionic liquids and its significance to their thermodynamic modelling. <i>Fluid Phase Equilibria</i> , 2022 , 552, 113277	2.5	1	
8	Use of cork granules as an effective sustainable material to clean-up spills of crude oil and derivatives. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 366-378	5.1	1	
7	A corrosion evaluation of mild carbon steel in reclaimed refinery stripped sour water. <i>Journal of Environmental Management</i> , 2020 , 272, 111080	7.9	1	
6	Densities, heat capacities, viscosities, 1H- and 13C-NMR spectra, and solvatochromic parameters of binary mixtures of 1,3-dimethyl-1,3-diazinan-2-one (DMPU) and water. <i>Journal of Chemical Thermodynamics</i> , 2021 , 161, 106550	2.9	1	
5	Characterization of cholinium-carboxylate-based aqueous biphasic systems. <i>Fluid Phase Equilibria</i> , 2022 , 558, 113458	2.5	1	
4	Polymeric foams from recycled thermoplastic poly(ethylene terephthalate). <i>Journal of Cellular Plastics</i> , 2020 , 0021955X2094856	1.5	Ο	
3	Effect of dicationic ionic liquids on cloud points of tergitol surfactant and the formation of aqueous micellar two-phase systems. <i>Journal of Materials Science</i> , 2021 , 56, 12171-12182	4.3		
2	Predicting the concentration of hazardous phenolic compounds in refinery wastewater-a multivariate data analysis approach. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1		
1	Encapsulated Protic Ionic Liquids as Sustainable Materials for CO2 Separation. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 4046-4057	3.9		