Yves F Basset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3325747/publications.pdf

Version: 2024-02-01

117 papers	9,160 citations	44042 48 h-index	91 g-index
122	122	122	9291
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Male ant reproductive investment in a seasonal wet tropical forest: Consequences of future climate change. PLoS ONE, 2022, 17, e0266222.	1.1	5
2	More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. Biology Letters, 2022, 18, 20210519.	1.0	10
3	Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera). Scientific Reports, 2022, 12, .	1.6	7
4	Assemblages of fruit flies (Diptera: Tephritidae) along an elevational gradient in the rainforests of Papua New Guinea. Insect Conservation and Diversity, 2021, 14, 348-355.	1.4	5
5	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
6	Host specificity and interaction networks of insects feeding on seeds and fruits in tropical rainforests. Oikos, 2021, 130, 1462-1476.	1.2	10
7	Spatial and functional structure of an entire ant assemblage in a lowland Panamanian rainforest. Basic and Applied Ecology, 2021, 56, 32-44.	1.2	4
8	Longâ€ŧerm (1979–2019) dynamics of protected orchid bees in Panama. Conservation Science and Practice, 2021, 3, e543.	0.9	8
9	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	3.4	176
10	Interpreting insect declines: seven challenges and a way forward. Insect Conservation and Diversity, 2020, 13, 103-114.	1.4	271
11	Monitoring tropical insects in the 21st century. Advances in Ecological Research, 2020, 62, 295-330.	1.4	15
12	Host Records for Tortricidae (Lepidoptera) Reared from Seeds and Fruits in Panama. Proceedings of the Entomological Society of Washington, 2020, 122, 12.	0.0	1
13	Enemy-free space and the distribution of ants, springtails and termites in the soil of one tropical rainforest. European Journal of Soil Biology, 2020, 99, 103193.	1.4	4
14	High specialization and limited structural change in plantâ€herbivore networks along a successional chronosequence in tropical montane forest. Ecography, 2019, 42, 162-172.	2.1	19
15	A highly resolved food web for insect seed predators in a speciesâ€rich tropical forest. Ecology Letters, 2019, 22, 1638-1649.	3.0	32
16	Toward a world that values insects. Science, 2019, 364, 1230-1231.	6.0	89
17	Interâ€annual monitoring improves diversity estimation of tropical butterfly assemblages. Biotropica, 2019, 51, 519-528.	0.8	3
18	Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach. PLoS ONE, 2019, 14, e0222119.	1.1	20

#	Article	IF	CITATIONS
19	The insectâ€focused classification of fruit syndromes in tropical rain forests: An interâ€continental comparison. Biotropica, 2019, 51, 39-49.	0.8	2
20	Saproxylic beetles in tropical and temperate forests – A standardized comparison of vertical stratification patterns. Forest Ecology and Management, 2019, 444, 50-58.	1.4	18
21	Insect assemblages attacking seeds and fruits in a rainforest in Thailand. Entomological Science, 2019, 22, 137-150.	0.3	4
22	An entomocentric view of the Janzenâ€"Connell hypothesis. Insect Conservation and Diversity, 2019, 12, 1-8.	1.4	9
23	Host Records for Tortricidae (Lepidoptera) Reared from Seeds and Fruits in a Thailand Rainforest. Proceedings of the Entomological Society of Washington, 2019, 121, 544.	0.0	6
24	A crossâ€continental comparison of assemblages of seed―and fruitâ€feeding insects in tropical rain forests: Faunal composition and rates of attack. Journal of Biogeography, 2018, 45, 1395-1407.	1.4	12
25	Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in <i>Ficus</i> . Ecology Letters, 2018, 21, 83-92.	3.0	80
26	Don't be a zeroâ€sum reviewer. Insect Conservation and Diversity, 2017, 10, 1-4.	1.4	10
27	Higher predation risk for insect prey at low latitudes and elevations. Science, 2017, 356, 742-744.	6.0	353
	The database of the years DDEDICTS (Jeans, (Draingting Decomposes of Ecological Diversity In Changing) Ti FTOOO		
28	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq0	0 0 rgBT /	Overlock 10 T
28	The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the longâ€term effects of climate change?. Ecology and Evolution, 2017, 7, 9991-10004.	0.8 O.8	Overlock 10 T
	The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the longâ€term effects	0.0	100
29	The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the longâ€term effects of climate change?. Ecology and Evolution, 2017, 7, 9991-10004. Phylogenetic trophic specialization: a robust comparison of herbivorous guilds. Oecologia, 2017, 185,	0.8	20
29 30	The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the longâ€term effects of climate change?. Ecology and Evolution, 2017, 7, 9991-10004. Phylogenetic trophic specialization: a robust comparison of herbivorous guilds. Oecologia, 2017, 185, 551-559. Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest.	0.8	20
29 30 31	The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the longâ€term effects of climate change?. Ecology and Evolution, 2017, 7, 9991-10004. Phylogenetic trophic specialization: a robust comparison of herbivorous guilds. Oecologia, 2017, 185, 551-559. Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171803. Contrasting the distribution of butterflies and termites in plantations and tropical forests.	0.8	20 21 25
29 30 31 32	The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the longâ€term effects of climate change?. Ecology and Evolution, 2017, 7, 9991-10004. Phylogenetic trophic specialization: a robust comparison of herbivorous guilds. Oecologia, 2017, 185, 551-559. Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171803. Contrasting the distribution of butterflies and termites in plantations and tropical forests. Biodiversity and Conservation, 2017, 26, 151-176.	0.8 0.9 1.2	20 21 25 9
29 30 31 32	The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the longâ€term effects of climate change?. Ecology and Evolution, 2017, 7, 9991-10004. Phylogenetic trophic specialization: a robust comparison of herbivorous guilds. Oecologia, 2017, 185, 551-559. Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171803. Contrasting the distribution of butterflies and termites in plantations and tropical forests. Biodiversity and Conservation, 2017, 26, 151-176. Vertical stratification of moths across elevation and latitude. Journal of Biogeography, 2016, 43, 59-69. Diversity and recent population trends of assassin bugs (Hemiptera: Reduviidae) on Barro Colorado	0.8 0.9 1.2 1.4	20 21 25 9

#	Article	IF	CITATIONS
37	Circle the bandwagons $\hat{a}\in$ challenges mount against the theoretical foundations of applied functional trait and ecosystem service research. Insect Conservation and Diversity, 2016, 9, 1-3.	1.4	21
38	The Butterflies of Barro Colorado Island, Panama: Local Extinction since the 1930s. PLoS ONE, 2015, 10, e0136623.	1.1	39
39	The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 442-447.	3.3	454
40	Whole-ecosystem experimental manipulations of tropical forests. Trends in Ecology and Evolution, 2015, 30, 334-346.	4.2	46
41	Expanding horizons and widening participation in Insect Conservation and Diversity. Insect Conservation and Diversity, 2015, 8, 1-2.	1.4	2
42	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
43	Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle. PLoS ONE, 2015, 10, e0144110.	1.1	102
44	How to avoid the top ten pitfalls in insect conservation and diversity research and minimise your chances of manuscript rejection. Insect Conservation and Diversity, 2014, 7, 1-3.	1.4	10
45	Density of Insect Galls in the Forest Understorey and Canopy: Neotropical, Gondwana or Global Patterns?., 2014,, 129-141.		9
46	Crossâ€continental comparisons of butterfly assemblages in tropical rainforests: implications for biological monitoring. Insect Conservation and Diversity, 2013, 6, 223-233.	1.4	36
47	Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis. Oecologia, 2013, 171, 357-365.	0.9	51
48	Arthropod diversity and the future of allâ€ŧaxa inventories. Insect Conservation and Diversity, 2013, 6, 1-4.	1.4	10
49	Arthropod Diversity in a Tropical Forest. Science, 2012, 338, 1481-1484.	6.0	445
50	Insects on Plants: Explaining the Paradox of Low Diversity within Specialist Herbivore Guilds. American Naturalist, 2012, 179, 351-362.	1.0	47
51	Insect Conservation and Diversity- making an impact. Insect Conservation and Diversity, 2011, 4, 1-1.	1.4	2
52	Comparison of rainforest butterfly assemblages across three biogeographical regions using standardized protocols. The Journal of Research on the Lepidoptera, 2011, 44, 17-28.	0.1	22
53	Guildâ€specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. Journal of Animal Ecology, 2010, 79, 1193-1203.	1.3	261
54	Research needs in insect conservation and diversity. Insect Conservation and Diversity, 2010, 3, 1-4.	1.4	27

#	Article	IF	CITATIONS
55	Review of the Neotropical genusOronoquaFennah, 1947 (Insecta, Hemiptera, Issidae). Zoosystema, 2010, 32, 247-257.	0.2	7
56	Quantifying Uncertainty in Estimation of Tropical Arthropod Species Richness. American Naturalist, 2010, 176, 90-95.	1.0	199
57	Monitoring arthropods in a tropical landscape: relative effects of sampling methods and habitat types on trap catches. Journal of Insect Conservation, 2009, 13, 103-118.	0.8	77
58	Visions for insect conservation and diversity: spanning the gap between practice and theory. Insect Conservation and Diversity, 2009, 2, 1-4.	1.4	6
59	Insect conservation: finding the way forward. Insect Conservation and Diversity, 2008, 1, 67-69.	1.4	36
60	Insect Conservation and Diversity $\hat{a} \in \hat{a}$ a new journal for the Royal Entomological Society. Insect Conservation and Diversity, 2008, 1, 1-1.	1.4	5
61	Choice of metrics for studying arthropod responses to habitat disturbance: one example from Gabon. Insect Conservation and Diversity, 2008, $1,55-66$.	1.4	38
62	Changes in Arthropod Assemblages along a Wide Gradient of Disturbance in Gabon. Conservation Biology, 2008, 22, 1552-1563.	2.4	51
63	Faunal turnover of arthropod assemblages along a wide gradient of disturbance in Gabon. African Entomology, 2008, 16, 47-59.	0.6	5
64	Influence of local illumination and plant composition on the spatial and seasonal distribution of litter-dwelling arthropods in a tropical rainforest. Pedobiologia, 2007, 51, 131-145.	0.5	18
65	Gallâ€forming and freeâ€feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography, 2007, 30, 663-672.	2.1	73
66	Low beta diversity of herbivorous insects in tropical forests. Nature, 2007, 448, 692-695.	13.7	227
67	PHYLOGENETIC DISPERSION OF HOST USE IN A TROPICAL INSECT HERBIVORE COMMUNITY. Ecology, 2006, 87, S62-S75.	1.5	171
68	Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests?. Science, 2006, 313, 1115-1118.	6.0	469
69	Vertical stratification of leaf-beetle assemblages (Coleoptera: Chrysomelidae) in two forest types in Panama. Journal of Tropical Ecology, 2005, 21, 329-336.	0.5	59
70	An altitudinal comparison of caterpillar (Lepidoptera) assemblages on <i>Ficus</i> trees in Papua New Guinea. Journal of Biogeography, 2005, 32, 1303-1314.	1.4	48
71	Host specificity of insect herbivores in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1083-1090.	1.2	289
72	Insects on Plants: Diversity of Herbivore Assemblages Revisited. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 597-620.	3.8	225

#	Article	IF	CITATIONS
73	No tree an island: the plant-caterpillar food web of a secondary rain forest in New Guinea. Ecology Letters, 2004, 7, 1090-1100.	3.0	64
74	Conservation and biological monitoring of tropical forests: the role of parataxonomists. Journal of Applied Ecology, 2004, 41, 163-174.	1.9	80
75	Local Species Richness of Leaf-Chewing Insects Feeding on Woody Plants from One Hectare of a Lowland Rainforest. Conservation Biology, 2004, 18, 227-237.	2.4	44
76	Discriminatory power of different arthropod data sets for the biological monitoring of anthropogenic disturbance in tropical forests. Biodiversity and Conservation, 2004, 13, 709-732.	1.2	62
77	Colonising aliens: caterpillars (Lepidoptera) feeding on Piper aduncum and P. umbellatum in rainforests of Papua New Guinea. Ecological Entomology, 2003, 28, 704-716.	1.1	47
78	Predictably simple: assemblages of caterpillars (Lepidoptera) feeding on rainforest trees in Papua New Guinea. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2337-2344.	1.2	55
79	Host specialization of leaf-chewing insects in a New Guinea rainforest. Journal of Animal Ecology, 2002, 71, 400-412.	1.3	90
80	Low host specificity of herbivorous insects in a tropical forest. Nature, 2002, 416, 841-844.	13.7	588
81	Communities of insect herbivores foraging on saplings versus mature trees of Pourouma bicolor (Cecropiaceae) in Panama. Oecologia, 2001, 129, 253-260.	0.9	70
82	Short-term effects of canopy openness on insect herbivores in a rain forest in Guyana. Journal of Applied Ecology, 2001, 38, 1045-1058.	1.9	80
83	Habitat and successional status of plants in relation to the communities of their leaf-chewing herbivores in Papua New Guinea. Journal of Ecology, 2001, 89, 186-199.	1.9	70
84	Invertebrates in the canopy of tropical rain forests How much do we really know?. Plant Ecology, 2001, 153, 87-107.	0.7	96
85	Stratification and diel activity of arthropods in a lowland rainforest in Gabon. Biological Journal of the Linnean Society, 2001, 72, 585-607.	0.7	89
86	Invertebrates in the canopy of tropical rain forests How much do we really know?. Forestry Sciences, 2001, , 87-107.	0.4	24
87	Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos, 2000, 89, 564-572.	1.2	393
88	An annotated list of insect herbivores foraging on the seedlings of five forest trees in Guyana. Neotropical Entomology, 2000, 29, 433-452.	0.2	13
89	Quantifying Biodiversity: Experience with Parataxonomists and Digital Photography in Papua New Guinea and Guyana. BioScience, 2000, 50, 899.	2.2	67
90	The jumping plant-lice (Hemiptera, Psylloidea) associated with Schinus (Anacardiaceae): systematics, biogeography and host plant relationships. Journal of Natural History, 2000, 34, 57-155.	0.2	97

#	Article	IF	Citations
91	Insect herbivores foraging on seedlings in an unlogged rain forest in Guyana: spatial and temporal considerations. Studies on Neotropical Fauna and Environment, 2000, 35, 115-129.	0.5	16
92	Predation risk for herbivorous insects on tropical vegetation: A search for enemy-free space and time. Austral Ecology, 1999, 24, 477-483.	0.7	51
93	Species richness of insect herbivore communities on Ficus in Papua New Guinea. Biological Journal of the Linnean Society, 1999, 67, 477-499.	0.7	64
94	Diversity and abundance of insect herbivores foraging on seedlings in a rainforest in Guyana. Ecological Entomology, 1999, 24, 245-259.	1,1	47
95	Body size and host plant specialization: a relationship from a community of herbivorous insects on Ficus from Papua New Guinea. Journal of Tropical Ecology, 1999, 15, 315-328.	0.5	39
96	Seasonality of sap-sucking insects (Auchenorrhyncha, Hemiptera) feeding on Ficus (Moraceae) in a lowland rain forest in New Guinea. Oecologia, 1998, 115, 514-522.	0.9	102
97	Assessing the impact of forest disturbance on tropical invertebrates: some comments. Journal of Applied Ecology, 1998, 35, 461-466.	1.9	49
98	Alternative Predator Avoidance Syndromes of Stream-Dwelling Mayfly Larvae. Ecology, 1996, 77, 1888-1905.	1.5	110
99	How many species of host-specific insects feed on a species of tropical tree?. Biological Journal of the Linnean Society, 1996, 59, 201-216.	0.7	62
100	Diel activity of arboreal arthropods associated with Papua New Guinean trees. Journal of Natural History, 1996, 30, 101-112.	0.2	28
101	Local Communities of Arboreal Herbivores in Papua New Guinea: Predictors of Insect Variables. Ecology, 1996, 77, 1906-1919.	1.5	71
102	How many species of host-specific insects feed on a species of tropical tree?. Biological Journal of the Linnean Society, 1996, 59, 201-216.	0.7	7
103	Diel activity of arboreal arthropods associated with a rainforest tree. Journal of Natural History, 1992, 26, 947-952.	0.2	12
104	Influence of leaf traits on the spatial distribution of arboreal arthropods within an overstorey rainforest tree. Ecological Entomology, 1992, 17, 8-16.	1.1	32
105	Aggregation and synecology of arboreal arthropods associated with an overstorey rain forest tree in Australia. Journal of Tropical Ecology, 1992, 8, 317-327.	0.5	5
106	Abundance and stratification of foliage arthropods in a lowland rain forest of Cameroon. Ecological Entomology, 1992, 17, 310-318.	1,1	88
107	Host specificity of arboreal and free-living insect herbivores in rain forests. Biological Journal of the Linnean Society, 1992, 47, 115-133.	0.7	85
108	The arthropod community of an Australian rainforest tree: Abundance of component taxa, species richness and guild structure. Austral Ecology, 1992, 17, 89-98.	0.7	42

#	Article	IF	CITATIONS
109	The seasonality of arboreal arthropods foraging within an Australian rainforest tree. Ecological Entomology, 1991, 16, 265-278.	1.1	45
110	Species number, species abundance and body length of arboreal arthropods associated with an Australian rainforest tree. Ecological Entomology, 1991, 16, 391-402.	1.1	77
111	The Spatial Distribution of Herbivory, Mines and Galls Within an Australian Rain Forest Tree. Biotropica, 1991, 23, 271.	0.8	50
112	Influence of leaf traits on the spatial distribution of insect herbivores associated with an overstorey rainforest tree. Oecologia, 1991, 87, 388-393.	0.9	49
113	Leaf production of an overstorey rainforest tree and its effects on the temporal distribution of associated insect herbivores. Oecologia, 1991, 88, 211-219.	0.9	38
114	The Taxonomic Composition of the Arthropod Fauna Associated With an Australian Rain-Forest Tree. Australian Journal of Zoology, 1991, 39, 171.	0.6	67
115	A COMPOSITE INTERCEPTION TRAP FOR SAMPLING ARTHROPODS IN TREE CANOPIES. Australian Journal of Entomology, 1988, 27, 213-219.	1.1	46
116	Methodological considerations for monitoring soil/litter arthropods in tropical rainforests using DNA metabarcoding, with a special emphasis on ants, springtails and termites. Metabarcoding and Metagenomics, 0, 4, .	0.0	6
117	The role of herbivorous insects and pathogens in the regeneration dynamics of Guazuma ulmifolia in Panama. Nature Conservation, 0, 32, 81-101.	0.0	6