Junying Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3325700/publications.pdf

Version: 2024-02-01

		257450	361022
70	1,597	24	35
papers	citations	h-index	g-index
70	70	70	1442
70	70	70	1442
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A renewable resveratrol-based epoxy resin with high Tg, excellent mechanical properties and low flammability. Chemical Engineering Journal, 2020, 383, 123124.	12.7	135
2	Facile Strategy in Designing Epoxy/Paraffin Multiple Phase Change Materials for Thermal Energy Storage Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 3375-3384.	6.7	78
3	A fully biomass based monomer from itaconic acid and eugenol to build degradable thermosets <i>via</i> thiol–ene click chemistry. Green Chemistry, 2020, 22, 921-932.	9.0	67
4	Study on a reliable epoxy-based phase change material: facile preparation, tunable properties, and phase/microphase separation behavior. Journal of Materials Chemistry A, 2017, 5, 14562-14574.	10.3	57
5	Superhydrophobic, multi-responsive and flexible bottlebrush-network-based form-stable phase change materials for thermal energy storage and sprayable coatings. Journal of Materials Chemistry A, 2020, 8, 22315-22326.	10.3	51
6	Malleable, Recyclable, and Robust Poly(amide–imine) Vitrimers Prepared through a Green Polymerization Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 5673-5683.	6.7	47
7	3D Printable, Recyclable and Adjustable Comb/Bottlebrush Phase Change Polysiloxane Networks toward Sustainable Thermal Energy Storage. Energy Storage Materials, 2021, 39, 294-304.	18.0	43
8	Crystallizable and tough aliphatic thermoplastic poly(ether urethane)s synthesized through a non-isocyanate route. RSC Advances, 2014, 4, 43406-43414.	3.6	42
9	Recyclable, shapeâ€memory, and selfâ€healing soy oilâ€based polyurethane crosslinked by a thermoreversible Diels–Alder reaction. Journal of Applied Polymer Science, 2018, 135, 46049.	2.6	40
10	Preparation and shape memory properties of rigid-flexible integrated epoxy resins via tunable micro-phase separation structures. Polymer, 2019, 178, 121592.	3.8	40
11	Recyclable Diels–Alder Furan/Maleimide Polymer Networks with Shape Memory Effect. Industrial & Engineering Chemistry Research, 2014, 53, 16156-16163.	3.7	39
12	Synthesis of Eugenol-Based Polyols via Thiol–Ene Click Reaction and High-Performance Thermosetting Polyurethane Therefrom. ACS Sustainable Chemistry and Engineering, 2020, 8, 4158-4166.	6.7	39
13	Insights into the Vulcanization Mechanism through a Simple and Facile Approach to the Sulfur Cleavage Behavior. Macromolecules, 2017, 50, 803-810.	4.8	38
14	Aliphatic thermoplastic polyurethane-ureas and polyureas synthesized through a non-isocyanate route. RSC Advances, 2015, 5, 6843-6852.	3.6	36
15	Synthesis and characterization of aliphatic segmented poly(ether amide urethane)s through a non-isocyanate route. RSC Advances, 2014, 4, 23720.	3.6	33
16	Influence of cross-linking density on the structure and properties of the interphase within supported ultrathin epoxy films. Journal of Materials Science, 2016, 51, 9019-9030.	3.7	33
17	Robust, Multiresponsive, Superhydrophobic, and Oleophobic Nanocomposites via a Highly Efficient Multifluorination Strategy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28949-28961.	8.0	31
18	Curing kinetics and shape-memory behavior of an intrinsically toughened epoxy resin system. Journal of Thermal Analysis and Calorimetry, 2015, 119, 537-546.	3.6	30

#	Article	IF	CITATIONS
19	High mechanical properties of epoxy networks with dangling chains and tunable microphase separation structure. RSC Advances, 2017, 7, 49074-49082.	3.6	30
20	Direct synthesis and characterization of crosslinked polysiloxanes via anionic ring-opening copolymerization with octaisobutyl-polyhedral oligomeric silsesquioxane and octamethylcyclotetrasiloxane. Journal of Applied Polymer Science, 2006, 102, 3848-3856.	2.6	28
21	Thermal, mechanical and shape memory properties of an intrinsically toughened epoxy/anhydride system. Journal of Polymer Research, 2014, 21, 1.	2.4	27
22	Epoxy/polysiloxane intimate intermixing networks driven by intrinsic motive force to achieve ultralow-temperature damping properties. Journal of Materials Chemistry A, 2017, 5, 17549-17562.	10.3	27
23	From biomass resources to functional materials: A fluorescent thermosetting material based on resveratrol via thiol-ene click chemistry. European Polymer Journal, 2020, 123, 109416.	5 . 4	26
24	Polymer Encapsulation Strategy toward 3D Printable, Sustainable, and Reliable Form-Stable Phase Change Materials for Advanced Thermal Energy Storage. ACS Applied Materials & Enterfaces, 2022, 14, 4251-4264.	8.0	26
25	Novel polymethoxylsiloxaneâ€based crosslinking reagent and its <i>inâ€situ</i> improvement for thermal and mechanical properties of siloxane elastomer. Journal of Applied Polymer Science, 2008, 107, 3788-3795.	2.6	25
26	Characteristics of water absorption in amine-cured epoxy networks: a molecular simulation and experimental study. Soft Matter, 2018, 14, 8740-8749.	2.7	25
27	Synthesis and characterization of aliphatic poly(amide urethane)s having different nylon 6 segments through non-isocyanate route. Journal of Polymer Research, 2014, 21, 1.	2.4	24
28	Effects of the furan ring in epoxy resin on the thermomechanical properties of highly cross-linked epoxy networks: a molecular simulation study. RSC Advances, 2016, 6, 769-777.	3.6	23
29	Preparation and properties of self-healing cross-linked polyurethanes based on blocking and deblocking reaction. Reactive and Functional Polymers, 2019, 144, 104347.	4.1	22
30	Reworkable adhesives: Healable and fast response at ambient environment based on anthracene-based thiol-ene networks. European Polymer Journal, 2020, 137, 109927.	5 . 4	21
31	Study on curing kinetics of diglycidyl 1,2-cyclohexane dicarboxylate epoxy/episulfide resin system with hexahydro-4-methylphthalic anhydride as a curing agent. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1893-1903.	3.6	20
32	Latent curing epoxy systems with reduced curing temperature and improved stability. Thermochimica Acta, 2019, 676, 130-138.	2.7	20
33	Study on the dual-curing mechanism of epoxy/allyl compound/sulfur system. Journal of Materials Science, 2016, 51, 7887-7898.	3.7	19
34	The Chromogen, Structure, Inspirations, and Applications of a Photo-, pH-, thermal-, Solvent-, and Mechanical-Response Epoxy Resin. Industrial & Engineering Chemistry Research, 2018, 57, 13283-13290.	3.7	19
35	A resveratrol-based epoxy resin with ultrahigh Tg and good processability. European Polymer Journal, 2021, 147, 110282.	5.4	19
36	A biomass-based Schiff base vitrimer with both excellent performance and multiple degradability. Polymer Chemistry, 2021, 12, 6527-6537.	3.9	19

#	Article	IF	CITATIONS
37	Bio-based recyclable Form-Stable phase change material based on thermally reversible Diels–Alder reaction for sustainable thermal energy storage. Chemical Engineering Journal, 2022, 448, 137749.	12.7	19
38	Synthesis and properties of non-isocyanate aliphatic thermoplastic polyurethane elastomers with polycaprolactone soft segments. Journal of Polymer Research, 2017, 24, 1.	2.4	18
39	Effects of Regular Networks Composed of Rigid and Flexible Segments on the Shape Memory Performance of Epoxies. Industrial & Engineering Chemistry Research, 2018, 57, 7898-7904.	3.7	18
40	A novel crosslinking agent of polymethyl (ketoxime) siloxane for room temperature vulcanized silicone rubbers: synthesis, properties and thermal stability. RSC Advances, 2018, 8, 12517-12525.	3.6	17
41	Lowâ€dielectric constant and viscosity tetrafunctional bioâ€based epoxy resin containing cyclic siloxane blocks. Journal of Applied Polymer Science, 2022, 139, .	2.6	15
42	Quantitative evaluation of the non-thermal effect in microwave induced polymer curing. RSC Advances, 2021, 11, 3740-3750.	3.6	14
43	Synthesis and properties of segmented polyurethanes with hydroquinone ether derivatives as chain extender. Journal of Polymer Research, 2015, 22, 1.	2.4	13
44	Synthesis, characterization, and cure kinetics analysis of high refractive index copolysiloxanes. Journal of Thermal Analysis and Calorimetry, 2014, 117, 875-883.	3.6	12
45	Thermally Reversible Crosslinked Polyurethanes Based on Blocking and Deblocking Reaction. Macromolecular Materials and Engineering, 2020, 305, 1900782.	3.6	12
46	High-performance, multi-functional and well-dispersed graphene/epoxy nanocomposites via internal antiplasticization and π-πF interactions. Composites Science and Technology, 2021, 215, 109008.	7.8	12
47	A facile method for fabrication of titanium-doped hybrid materials with high refractive index. RSC Advances, 2014, 4, 13909-13918.	3.6	11
48	A Newly Designed Dualâ€Functional Epoxy Monomer for Preparation of Fishboneâ€Shaped Heterochain Polymer with a High Damping Property at Low Temperature. Macromolecular Materials and Engineering, 2017, 302, 1600574.	3.6	11
49	An Efficiently Reworkable Thermosetting Adhesive Based on Photoreversible [4+4] Cycloaddition Reaction of Epoxyâ€Based Prepolymer with Four Anthracene End Groups. Macromolecular Chemistry and Physics, 2021, 222, 2000298.	2.2	11
50	Preparation of thermal plastic polyurethane-polystyrene block copolymer via UV irradiation polymerization. Journal of Polymer Research, 2014, 21, 1.	2.4	9
51	Synthesis and properties of strong and tough Diels–Alder self-healing crosslinked polyamides. Journal of Polymer Research, 2021, 28, 1.	2.4	9
52	A Bio-based healable/renewable polyurethane elastomer derived from L-Tyrosine/Vanillin/Dimer acid. Chemical Engineering Science, 2022, 258, 117736.	3.8	9
53	The well-designed hierarchical structure of Musa basjoo for supercapacitors. Scientific Reports, 2016, 6, 20306.	3.3	8

Biobased Linear and Crystallizable Polyhydroxy(amide-urethane)s from Diglycerol Bis(cyclic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td

#	Article	lF	CITATIONS
55	Study on the synthesis of thiirane. Journal of Applied Polymer Science, 2006, 101, 4023-4027.	2.6	7
56	Structureâ€Property Relationship of Polyimide Fibers with High Tensile Strength and Low Dielectric Constant by Introducing Benzimidazole and Trifluoromethyl Units. Macromolecular Materials and Engineering, 2021, 306, 2000705.	3.6	7
57	Influences of different imidization conditions on polyimide fiber properties and structure. Journal of Applied Polymer Science, 2021, 138, 51189.	2.6	7
58	Comparative curing kinetics of 1,4-bis (4-diaminobenzene-1-oxygen) n-butane and 4,4′-bis-(diaminodiphenyl) methane with tetraglycidyl methylene dianiline systems. Journal of Thermal Analysis and Calorimetry, 2014, 117, 603-610.	3.6	6
59	Miscibility, morphology, structure, and properties of porous cellulose–soy protein isolate hybrid hydrogels. Journal of Applied Polymer Science, 2016, 133, .	2.6	6
60	Preparation and Properties of a Self-Healing, Multiresponsive Color-Change Hydrogel. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 10689-10696.	3.7	6
61	Thermo-mechanically improved curcumin and zwitterion incorporated polyurethane-urea elastomers. Polymer Degradation and Stability, 2019, 164, 28-35.	5.8	5
62	Bio-based cross-linked polyitaconamides synthesized through a Michael ene-amine addition and bulk polycondensation. Journal of Polymer Research, 2020, 27, 1.	2.4	5
63	Aliphatic segmented poly(ether ester amide)s synthesized from hexanediamine, sebacic acid and poly(ethylene glycol)s. Chemical Research in Chinese Universities, 2016, 32, 505-511.	2.6	4
64	Two Branched Silicone Resins with Different Reactive Groups: A Comparative Evaluation. Industrial & Evaluation Chemistry Research, 2018, 57, 5606-5615.	3.7	4
65	The Miscibility of Novel Bisphenol-Propylene Epoxy Resin With Liquid NBR. Journal of Adhesion Science and Technology, 2008, 22, 1181-1196.	2.6	3
66	Synthesis and properties of non-isocyanate thermoplastic polyurethanes containing dibutylene terephthalate units. Journal of Polymer Research, 2016, 23, 1.	2.4	3
67	Synthesis and Properties of Non-isocyanate Crystallizable Aliphatic Thermoplastic Polyurethanes. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1275-1280.	1.0	3
68	Thermoplastic polyurethane with good mechanical and processing performances via blocking and deblocking of isocyanates. Journal of Applied Polymer Science, 2021, 138, 51315.	2.6	3
69	Molecular dynamics simulation of thermo-mechanical behaviour of elastomer cross-linked <i>via</i> multifunctional zwitterions. Physical Chemistry Chemical Physics, 2019, 21, 21615-21625.	2.8	2
70	Synthesis and characterization of biodegradable alternating polyesteramides from mixed diamidediols and sebacic acid. Chemical Research in Chinese Universities, 2014, 30, 168-175.	2.6	1