
Changhao Bi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3324967/publications.pdf Version: 2024-02-01

Сналснао Ві

#	Article	IF	CITATIONS
1	Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology, 2021, 39, 35-40.	9.4	277
2	Engineering of Ralstonia eutropha H16 for Autotrophic and Heterotrophic Production of Methyl Ketones. Applied and Environmental Microbiology, 2013, 79, 4433-4439.	1.4	139
3	Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microbial Cell Factories, 2013, 12, 107.	1.9	103
4	Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microbial Cell Factories, 2016, 15, 205.	1.9	96
5	Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metabolic Engineering, 2017, 43, 85-91.	3.6	89
6	Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO2. Microbial Cell Factories, 2019, 18, 15.	1.9	66
7	The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metabolic Engineering, 2017, 43, 37-45.	3.6	57
8	End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. Journal of Biological Engineering, 2016, 10, 3.	2.0	54
9	Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. Metabolic Engineering, 2017, 44, 13-21.	3.6	51
10	Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnology for Biofuels, 2018, 11, 172.	6.2	50
11	Optimizing the localization of astaxanthin enzymes for improved productivity. Biotechnology for Biofuels, 2018, 11, 278.	6.2	49
12	PaR-PaR Laboratory Automation Platform. ACS Synthetic Biology, 2013, 2, 216-222.	1.9	46
13	Engineering Corynebacterium glutamicum for violacein hyper production. Microbial Cell Factories, 2016, 15, 148.	1.9	46
14	CRISPR/Cas9 Assisted Multiplex Genome Editing Technique in <i>Escherichia coli</i> . Biotechnology Journal, 2018, 13, e1700604.	1.8	44
15	Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metabolic Engineering, 2020, 57, 31-42.	3.6	42
16	PR-PR: Cross-Platform Laboratory Automation System. ACS Synthetic Biology, 2014, 3, 515-524.	1.9	41
17	Construction of Escherichia coli cell factories for crocin biosynthesis. Microbial Cell Factories, 2019, 18, 120.	1.9	39
18	Engineering the Calvin–Benson–Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Microbial Cell Factories, 2020, 19, 228.	1.9	39

Changhao Bi

#	Article	IF	CITATIONS
19	Coordinated Expression of Astaxanthin Biosynthesis Genes for Improved Astaxanthin Production in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 14917-14927.	2.4	38
20	CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2020, 9, 1781-1789.	1.9	38
21	Engineering an Artificial Membrane Vesicle Trafficking System (AMVTS) for the Excretion of β-Carotene in <i>Escherichia coli</i> . ACS Synthetic Biology, 2019, 8, 1037-1046.	1.9	36
22	Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories. 3 Biotech, 2018, 8, 269.	1.1	34
23	Combinatory optimization of chromosomal integrated mevalonate pathway for Î ² -carotene production in Escherichia coli. Microbial Cell Factories, 2016, 15, 202.	1.9	29
24	CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency. Scientific Reports, 2017, 7, 16624.	1.6	29
25	A novel point mutation in RpoB improves osmotolerance and succinic acid production in Escherichia coli. BMC Biotechnology, 2017, 17, 10.	1.7	28
26	Engineering Saccharomyces cerevisiae for the production of the valuable monoterpene ester geranyl acetate. Microbial Cell Factories, 2018, 17, 85.	1.9	25
27	CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli. Applied Microbiology and Biotechnology, 2019, 103, 8497-8509.	1.7	25
28	CRISPR-based metabolic pathway engineering. Metabolic Engineering, 2021, 63, 148-159.	3.6	24
29	Characterization of JEN family carboxylate transporters from the acidâ€ŧolerant yeast <i>Pichia kudriavzevii</i> and their applications in succinic acid production. Microbial Biotechnology, 2021, 14, 1130-1147.	2.0	23
30	Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2016, 9, 232.	6.2	22
31	Production of 14α-hydroxysteroids by a recombinant Saccharomyces cerevisiae biocatalyst expressing of a fungal steroid 14α-hydroxylation system. Applied Microbiology and Biotechnology, 2019, 103, 8363-8374.	1.7	22
32	Construction of a novel anaerobic pathway in Escherichia coli for propionate production. BMC Biotechnology, 2017, 17, 38.	1.7	21
33	Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in <i>Escherichia coli</i> . ACS Synthetic Biology, 2020, 9, 2600-2609.	1.9	19
34	Construction of a carbon-conserving pathway for glycolate production by synergetic utilization of acetate and glucose in Escherichia coli. Metabolic Engineering, 2020, 61, 152-159.	3.6	19
35	Development of an autotrophic fermentation technique for the production of fatty acids using an engineered <i>Ralstonia eutropha</i> cell factory. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 783-790.	1.4	17
36	Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. Molecular Therapy, 2022, 30, 2452-2463.	3.7	17

Changhao Bi

#	Article	IF	CITATIONS
37	Double-Check Base Editing for Efficient A to G Conversions. ACS Synthetic Biology, 2019, 8, 2629-2634.	1.9	14
38	Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research, 2022, 50, 4161-4170.	6.5	13
39	Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate by increasing the intracellular FAD pool. Biochemical Engineering Journal, 2019, 146, 132-142.	1.8	12
40	Multiple strategies for metabolic engineering of <i>Escherichia coli</i> for efficient production of glycolate. Biotechnology and Bioengineering, 2021, 118, 4699-4707.	1.7	12
41	Combinatorial modulation of initial codons for improved zeaxanthin synthetic pathway efficiency inEscherichia coli. MicrobiologyOpen, 2019, 8, e930.	1.2	11
42	Molecular Mechanism of the Cytosine CRISPR Base Editing Process and the Roles of Translesion DNA Polymerases. ACS Synthetic Biology, 2021, 10, 3353-3358.	1.9	10
43	A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21(DE3). Microbial Cell Factories, 2020, 19, 136.	1.9	9
44	Improving Succinate Productivity by Engineering a Cyanobacterial CO ₂ Concentrating System (CCM) in <i>Escherichia coli</i> . Biotechnology Journal, 2017, 12, 1700199.	1.8	8
45	Type IIs restriction based combinatory modulation technique for metabolic pathway optimization. Microbial Cell Factories, 2017, 16, 47.	1.9	7
46	A novel gene expression system for Ralstonia eutropha based on the T7 promoter. BMC Microbiology, 2020, 20, 121.	1.3	6
47	Nonclassical Biofilms Induced by DNA Breaks in Klebsiella pneumoniae. MSphere, 2020, 5, .	1.3	6
48	Helicase-AID: A novel molecular device for base editing at random genomic loci. Metabolic Engineering, 2021, 67, 396-402.	3.6	6
49	Engineering Circularized mRNAs for the Production of Spider Silk Proteins. Applied and Environmental Microbiology, 2022, 88, e0002822.	1.4	6
50	Manipulating the position of DNA expression cassettes using location tags fused to dCas9 (Cas9-Lag) to improve metabolic pathway efficiency. Microbial Cell Factories, 2020, 19, 229.	1.9	5
51	Cytotoxicity of HIV-gp41 segments expressed inE. coli. Science Bulletin, 2004, 49, 668-671.	1.7	1
52	Engineering an efficient H2 utilizing Escherichia coli platform by modulation of endogenous hydrogenases. Biochemical Engineering Journal, 2021, 166, 107851.	1.8	0