
Akihisa Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3324842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stat3 and MMP7 Contribute to Pancreatic Ductal Adenocarcinoma Initiation and Progression. Cancer Cell, 2011, 19, 441-455.	16.8	452
2	The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nature Cell Biology, 2014, 16, 255-267.	10.3	172
3	ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma inÂMice. Gastroenterology, 2018, 155, 194-209.e2.	1.3	60
4	Lineage tracing and targeting of IL17RB ⁺ tuft cell-like human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12996-13005.	7.1	49
5	The BRG1/SOX9 axis is critical for acinar cell–derived pancreatic tumorigenesis. Journal of Clinical Investigation, 2018, 128, 3475-3489.	8.2	48
6	Bmi1 Is Required for Regeneration of the Exocrine Pancreas in Mice. Gastroenterology, 2012, 143, 821-831.e2.	1.3	34
7	Arid1a is essential for intestinal stem cells through Sox9 regulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1704-1713.	7.1	26
8	SETDB1 Inhibits p53-Mediated Apoptosis and Is Required for Formation of Pancreatic Ductal Adenocarcinomas in Mice. Gastroenterology, 2020, 159, 682-696.e13.	1.3	26
9	Distinct Roles of HES1 in Normal Stem Cells and Tumor Stem-like Cells of the Intestine. Cancer Research, 2017, 77, 3442-3454.	0.9	23
10	SNAIL2 contributes to tumorigenicity and chemotherapy resistance in pancreatic cancer by regulating IGFBP2. Cancer Science, 2021, 112, 4987-4999.	3.9	22
11	Brg1 plays an essential role in development and homeostasis of the duodenum through regulation of Notch signaling. Development (Cambridge), 2016, 143, 3532-3539.	2.5	20
12	Visualization of stem cell activity in pancreatic cancer expansion by direct lineage tracing with live imaging. ELife, 2021, 10, .	6.0	20
13	The role of the SWI/SNF chromatin remodeling complex in pancreatic ductal adenocarcinoma. Cancer Science, 2021, 112, 490-497.	3.9	18
14	Loss of Arid1a and Pten in Pancreatic Ductal Cells Induces Intraductal Tubulopapillary Neoplasm via the YAP/TAZ Pathway. Gastroenterology, 2022, 163, 466-480.e6.	1.3	12
15	Gene expression profile of Dclk1+ cells in intestinal tumors. Digestive and Liver Disease, 2018, 50, 1353-1361.	0.9	10
16	Sox9-Dependent Acinar-to-Ductal Reprogramming is Critical for Pancreatic Intraepithelial Neoplasia Formation. Gastroenterology, 2013, 145, 904-907.	1.3	7
17	Molecular mechanism of intraductal papillary mucinous neoplasm and intraductal papillary mucinous neoplasm-derived pancreatic ductal adenocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2015, 22, 519-523.	2.6	7
18	Brg1 is required to maintain colorectal cancer stem cells. Journal of Pathology, 2021, 255, 257-269.	4.5	7

Akihisa Fukuda

#	Article	IF	CITATIONS
19	Concurrent Activation of Kras and Canonical Wnt Signaling Induces Premalignant Lesions That Progress to Extrahepatic Biliary Cancer in Mice. Cancer Research, 2022, 82, 1803-1817.	0.9	7
20	Successful endoscopic removal of fractured guidewire fragments from a peripheral bile duct using a biliary stent delivery system and biopsy forceps. Endoscopy, 2018, 50, E279-E280.	1.8	6
21	Pulmonary actinomycosis mimicking a lung metastasis from esophageal cancer; a case report. BMC Pulmonary Medicine, 2018, 18, 39.	2.0	5
22	Pyoderma gangrenosum with primary sclerosing cholangitis-associated colitis successfully treated with concomitant granulocyte and monocyte adsorption apheresis with corticosteroids. Clinical Journal of Gastroenterology, 2021, 14, 1561-1566.	0.8	4
23	Impact of neoadjuvant intensity-modulated radiation therapy on borderline resectable pancreatic cancer with arterial abutment; a prospective, open-label, phase II study in a single institution. BMC Cancer, 2022, 22, 119.	2.6	4
24	A case of cecocolonic intussusception after endoscopic submucosal dissection of a cecal adenoma. Gastrointestinal Endoscopy, 2018, 87, 1589-1590.	1.0	3
25	A case of a malignant serous neoplasm of the pancreas with synchronous vascular invasion and metachronous metastases. Clinical Journal of Gastroenterology, 2020, 13, 1347-1354.	0.8	2
26	Genetics and biology of pancreatic cancer and its precursor lesions: lessons learned from human pathology and mouse models. Annals of Pancreatic Cancer, 0, 2, 15-15.	1.2	2
27	Promoter-Level Transcriptome Identifies Stemness Associated With Relatively High Proliferation in Pancreatic Cancer Cells. Frontiers in Oncology, 2020, 10, 316.	2.8	1
28	An Unusual Cause of Hepatic Dysfunction. Gastroenterology, 2017, 153, 906-907.	1.3	0
29	A case of gastric granular cell tumor. JGH Open, 2021, 5, 966-967.	1.6	О