

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3324561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly effective CS ₂ conversion with aziridines catalyzed by novel [Dy ₂₄] nano-cages in MOFs under mild conditions. Journal of Materials Chemistry A, 2022, 10, 4889-4894.	5.2	13
2	An uncommon multicentered ZnI–ZnI bond-based MOF for CO2 fixation with aziridines/epoxides. Chemical Communications, 2021, 57, 7537-7540.	2.2	21
3	A high sensitivity luminescent sensor for the stress biomarker cortisol using four-fold interpenetrated europium–organic frameworks integrated with logic gates. Journal of Materials Chemistry C, 2021, 9, 9643-9649.	2.7	25
4	Applications of MOFs as Luminescent Sensors for Environmental Pollutants. Small, 2021, 17, e2005327.	5.2	177
5	Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Research, 2021, 14, 2981-3009.	5.8	26
6	Eco-friendly co-catalyst-free cycloaddition of CO2 and aziridines activated by a porous MOF catalyst. Science China Chemistry, 2021, 64, 1316-1322.	4.2	23
7	Cooperation between microporous frameworks and micron-sized channel in crystals for excellent chromate removal. Chemical Engineering Journal, 2021, , 132655.	6.6	0
8	Anhydrideâ€Assisted Spontaneous Room Temperature Sintering of Printed Bioresorbable Electronics. Advanced Functional Materials, 2020, 30, 1905024.	7.8	14
9	Bioresorbable Electronics: Anhydrideâ€Assisted Spontaneous Room Temperature Sintering of Printed Bioresorbable Electronics (Adv. Funct. Mater. 29/2020). Advanced Functional Materials, 2020, 30, 2070194.	7.8	1
10	Recent development of bioresorbable electronics using additive manufacturing. Current Opinion in Chemical Engineering, 2020, 28, 118-126.	3.8	6
11	Highly Efficient Conversion of Propargylic Amines and CO ₂ Catalyzed by Nobleâ€Metalâ€Free [Zn ₁₁₆] Nanocages. Angewandte Chemie - International Edition, 2020, 59, 8586-8593.	7.2	74
12	Highly Efficient Conversion of Propargylic Amines and CO ₂ Catalyzed by Nobleâ€Metalâ€Free [Zn ₁₁₆] Nanocages. Angewandte Chemie, 2020, 132, 8664-8671.	1.6	10
13	Fully Flexible Electromagnetic Vibration Sensors with Annular Field Confinement Origami Magnetic Membranes. Advanced Functional Materials, 2020, 30, 2001553.	7.8	49
14	A novel Cu-metal-organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. Nanotechnology, 2019, 30, 424002.	1.3	31
15	Origami NdFeB Flexible Magnetic Membranes with Enhanced Magnetism and Programmable Sequences of Polarities. Advanced Functional Materials, 2019, 29, 1904977.	7.8	55
16	Droplets as Carriers for Flexible Electronic Devices. Advanced Science, 2019, 6, 1901862.	5.6	23
17	Multifunctional Stretchable Sensors for Continuous Monitoring of Long-Term Leaf Physiology and Microclimate. ACS Omega, 2019, 4, 9522-9530.	1.6	76
18	Flexible Magnetoelectrical Devices with Intrinsic Magnetism and Electrical Conductivity. Advanced Electronic Materials, 2019, 5, 1900111.	2.6	13

Hang Xu

#	Article	IF	CITATIONS
19	High Uptake of ReO ₄ ^{â^'} and CO ₂ Conversion by a Radiationâ€Resistant Thorium–Nickle [Th ₄₈ Ni ₆] Nanocageâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 6022-6027.	7.2	109
20	High Uptake of ReO ₄ ^{â^'} and CO ₂ Conversion by a Radiationâ€Resistant Thorium–Nickle [Th ₄₈ Ni ₆] Nanocageâ€Based Metal–Organic Framework. Angewandte Chemie, 2019, 131, 6083-6088.	1.6	15
21	A Cuprous/Lanthanideâ€Organic Framework as the Luminescent Sensor of Hypochlorite. Chemistry - A European Journal, 2018, 24, 10296-10299.	1.7	36
22	Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal–Organic Frameworks. Advanced Materials, 2018, 30, e1800917.	11.1	80
23	A multifunctional MOF as a recyclable catalyst for the fixation of CO ₂ with aziridines or epoxides and as a luminescent probe of Cr(<scp>vi</scp>). Dalton Transactions, 2018, 47, 4545-4553.	1.6	77
24	Metal–metal bonded compounds with uncommon low oxidation state. Coordination Chemistry Reviews, 2018, 365, 122-144.	9.5	42
25	Implantable Flexible Electronics: Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks (Adv. Mater. 23/2018). Advanced Materials, 2018, 30, 1870166.	11.1	2
26	Processing Techniques for Bioresorbable Nanoparticles in Fabricating Flexible Conductive Interconnects. Materials, 2018, 11, 1102.	1.3	16
27	Aerosol printing and photonic sintering of bioresorbable zinc nanoparticle ink for transient electronics manufacturing. Science China Information Sciences, 2018, 61, 1.	2.7	25
28	3d-4f Heterometal–Organic Frameworks for Efficient Capture and Conversion of CO ₂ . Crystal Growth and Design, 2017, 17, 3128-3133.	1.4	43
29	Metal–Organic Frameworks with Tb ₄ Clusters as Nodes: Luminescent Detection of Chromium(VI) and Chemical Fixation of CO ₂ . Inorganic Chemistry, 2017, 56, 6244-6250.	1.9	109
30	A water-stable metal-organic framework: serving as a chemical sensor of PO43– and a catalyst for CO2 conversion. Science China Chemistry, 2017, 60, 1328-1333.	4.2	21
31	A Sensitive Luminescent Acetylacetone Probe Based on Znâ€MOF with Sixâ€Fold Interpenetration. Chemistry - A European Journal, 2017, 23, 13289-13293.	1.7	92
32	Novel lanthanide coordination polymers with Eu-compound exhibits warm white light emission: Synthesis, structure, and magnetic properties. Inorganic Chemistry Communication, 2016, 70, 51-55.	1.8	8
33	Unique (3,4,10)-Connected Lanthanide–Organic Framework as a Recyclable Chemical Sensor for Detecting Al ³⁺ . Inorganic Chemistry, 2016, 55, 4790-4794.	1.9	158
34	Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions. CrystEngComm, 2016, 18, 4445-4451.	1.3	130
35	A Bifunctional Europium–Organic Framework with Chemical Fixation of CO ₂ and Luminescent Detection of Al ³⁺ . Inorganic Chemistry, 2016, 55, 9671-9676.	1.9	142
36	A Porous Metal–Organic Framework Assembled by [Cu ₃₀] Nanocages: Serving as Recyclable Catalysts for CO ₂ Fixation with Aziridines. Advanced Science, 2016, 3, 1600048.	5.6	96

Hang Xu

#	Article	IF	CITATIONS
37	Electrodes: Reconstruction of Miniâ€Hollow Polyhedron Mn ₂ O ₃ Derived from MOFs as a Highâ€Performance Lithium Anode Material (Adv. Sci. 3/2016). Advanced Science, 2016, 3, .	5.6	1
38	Reconstruction of Miniâ€Hollow Polyhedron Mn ₂ O ₃ Derived from MOFs as a Highâ€Performance Lithium Anode Material. Advanced Science, 2016, 3, 1500185.	5.6	83
39	Lanthanide-based metal–organic frameworks as luminescent probes. Dalton Transactions, 2016, 45, 18003-18017.	1.6	233
40	Controlled lanthanide–organic framework nanospheres as reversible and sensitive luminescent sensors for practical applications. Chemical Communications, 2015, 51, 6769-6772.	2.2	97
41	Structural diversity of luminescent lanthanide metal–organic frameworks based on a V-shaped ligand. CrystEngComm, 2015, 17, 2471-2478.	1.3	19
42	A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions. Chemical Communications, 2015, 51, 10280-10283.	2.2	244
43	Lanthanide Organic Framework as a Regenerable Luminescent Probe for Fe ³⁺ . Inorganic Chemistry, 2015, 54, 4585-4587.	1.9	306
44	The multiple core–shell structure in Cu24Ln6 cluster with magnetocaloric effect and slow magnetization relaxation. Dalton Transactions, 2014, 43, 5639.	1.6	45