
Peter Christie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3324422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Significant Acidification in Major Chinese Croplands. Science, 2010, 327, 1008-1010.	6.0	2,808
2	Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3041-3046.	3.3	2,071
3	Enhanced nitrogen deposition over China. Nature, 2013, 494, 459-462.	13.7	2,009
4	Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 2007, 147, 422-428.	3.7	885
5	Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143, 117-125.	3.7	630
6	Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environmental Pollution, 2018, 243, 1550-1557.	3.7	452
7	Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. Journal of Hazardous Materials, 2016, 320, 417-426.	6.5	449
8	Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 2018, 116, 302-310.	4.2	385
9	Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution, 2007, 145, 497-506.	3.7	361
10	Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environmental Science & Technology, 2016, 50, 2328-2336.	4.6	344
11	Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science: Nano, 2019, 6, 41-59.	2.2	330
12	Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain. Field Crops Research, 2003, 83, 111-124.	2.3	302
13	EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems and Environment, 2004, 102, 307-318.	2.5	297
14	Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environmental Pollution, 2013, 180, 265-273.	3.7	281
15	Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere, 2016, 151, 171-177.	4.2	260
16	Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environmental Pollution, 2018, 239, 408-415.	3.7	254
17	Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant and Soil, 1999, 212, 105-114.	1.8	250
18	Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Science of the Total Environment, 2015, 523, 129-137.	3.9	244

#	Article	IF	CITATIONS
19	Soil Contamination and Plant Uptake of Heavy Metals at Polluted Sites in China. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 823-838.	0.9	206
20	Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 2004, 261, 209-217.	1.8	198
21	Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 2008, 394, 361-368.	3.9	193
22	Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals. Bioresource Technology, 2017, 228, 218-226.	4.8	191
23	The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere, 2003, 50, 839-846.	4.2	183
24	Behavior of Decabromodiphenyl Ether (BDE-209) in the Soilâ^'Plant System: Uptake, Translocation, and Metabolism in Plants and Dissipation in Soil. Environmental Science & Technology, 2010, 44, 663-667.	4.6	180
25	Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agriculture, Ecosystems and Environment, 2005, 111, 70-80.	2.5	178
26	Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environmental Science: Nano, 2015, 2, 68-77.	2.2	178
27	Dissolution and Microstructural Transformation of ZnO Nanoparticles under the Influence of Phosphate. Environmental Science & amp; Technology, 2012, 46, 7215-7221.	4.6	177
28	Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutrient Cycling in Agroecosystems, 2003, 65, 61-71.	1.1	172
29	Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresource Technology, 2010, 101, 3437-3443.	4.8	168
30	Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere, 2003, 50, 819-822.	4.2	165
31	Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region. Nutrient Cycling in Agroecosystems, 2004, 69, 51-58.	1.1	163
32	Antibiotics Disturb the Microbiome and Increase the Incidence of Resistance Genes in the Gut of a Common Soil Collembolan. Environmental Science & Technology, 2018, 52, 3081-3090.	4.6	162
33	Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Annals of Botany, 2016, 117, 363-377.	1.4	161
34	Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agriculture, Ecosystems and Environment, 2016, 225, 86-92.	2.5	160
35	Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environmental Pollution, 2011, 159, 1007-1016.	3.7	156
36	Greenhouse gas emissions from a wheat–maize double cropping system with different nitrogen fertilization regimes. Environmental Pollution, 2013, 176, 198-207.	3.7	156

#	Article	IF	CITATIONS
37	Water management affects arsenic and cadmium accumulation in different rice cultivars. Environmental Geochemistry and Health, 2013, 35, 767-778.	1.8	150
38	Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil and Tillage Research, 2016, 155, 85-94.	2.6	147
39	Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 2001, 42, 201-207.	4.2	138
40	Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. Journal of Hazardous Materials, 2011, 186, 1271-1276.	6.5	137
41	Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health, 2006, 28, 133-140.	1.8	135
42	Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytologist, 2000, 146, 155-161.	3.5	134
43	Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environmental Pollution, 2018, 235, 150-154.	3.7	134
44	Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites. Environmental Pollution, 2011, 159, 238-243.	3.7	128
45	Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology, 2003, 22, 139-148.	2.1	127
46	Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L Mycorrhiza, 2005, 15, 187-192.	1.3	127
47	Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous Fluvo-aquic soil. Scientific Reports, 2014, 4, 3950.	1.6	126
48	Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agriculture, Ecosystems and Environment, 2018, 260, 58-69.	2.5	125
49	Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant and Soil, 2011, 339, 147-161.	1.8	123
50	Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Science of the Total Environment, 2014, 472, 112-124.	3.9	122
51	Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. European Journal of Soil Biology, 2010, 46, 18-26.	1.4	117
52	Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Journal of Environmental Sciences, 2015, 27, 225-231.	3.2	115
53	Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination. Ecotoxicology and Environmental Safety, 2007, 68, 305-313.	2.9	113
54	Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environmental Science and Pollution Research, 2015, 22, 11109-11117.	2.7	111

#	Article	IF	CITATIONS
55	Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention. Agricultural Water Management, 2014, 141, 66-73.	2.4	110
56	Effects of repeated fertilizer and cattle slurry applications over 38 years on N dynamics in a temperate grassland soil. Soil Biology and Biochemistry, 2011, 43, 1362-1371.	4.2	109
57	Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere, 2001, 42, 193-199.	4.2	106
58	Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences, 2013, 10, 7897-7911.	1.3	106
59	Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau. European Journal of Soil Biology, 2014, 64, 6-14.	1.4	104
60	Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming. Environmental Science and Pollution Research, 2015, 22, 5908-5918.	2.7	104
61	Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Science of the Total Environment, 2019, 677, 373-381.	3.9	104
62	Organic manure phosphorus accumulation, mobility and management. Soil Use and Management, 1998, 14, 154-159.	2.6	103
63	Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site. Environmental Geochemistry and Health, 2013, 35, 465-476.	1.8	103
64	Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure. Environmental Pollution, 2021, 272, 116028.	3.7	101
65	Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Journal of Soils and Sediments, 2013, 13, 916-924.	1.5	100
66	Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere, 2003, 50, 813-818.	4.2	99
67	Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice–wheat cropping systems. Field Crops Research, 2003, 83, 297-311.	2.3	99
68	Effects of 44 years of chronic nitrogen fertilization on the soil nitrifying community of permanent grassland. Soil Biology and Biochemistry, 2015, 91, 76-83.	4.2	98
69	Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia, 2012, 55, 145-151.	0.5	97
70	Bioavailability of Copper and Zinc in Soils Treated with Alkaline Stabilized Sewage Sludges. Journal of Environmental Quality, 1998, 27, 335-342.	1.0	96
71	Simultaneous extraction of four classes of antibiotics in soil, manure and sewage sludge and analysis by liquid chromatography-tandem mass spectrometry with the isotope-labelled internal standard method. Analytical Methods, 2013, 5, 3721.	1.3	96
72	Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: A case study on the North China Plain. Field Crops Research, 2011, 124, 450-458.	2.3	95

#	Article	IF	CITATIONS
73	In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity. Journal of Soils and Sediments, 2011, 11, 980-989.	1.5	94
74	A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere, 2001, 42, 185-192.	4.2	92
75	New estimates of direct N ₂ O emissions from Chinese croplands from 1980 to 2007 using localized emission factors. Biogeosciences, 2011, 8, 3011-3024.	1.3	92
76	Long-term field phytoextraction of zinc/cadmium contaminated soil by <i>Sedum plumbizincicola</i> under different agronomic strategies. International Journal of Phytoremediation, 2016, 18, 134-140.	1.7	92
77	Total concentrations of heavy metals and occurrence of antibiotics in sewage sludges from cities throughout China. Journal of Soils and Sediments, 2014, 14, 1123-1135.	1.5	91
78	Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility. Environmental Research, 2020, 191, 110034.	3.7	91
79	Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biology and Biochemistry, 2009, 41, 726-734.	4.2	90
80	Soil organic carbon and total nitrogen in intensively managed arable soils. Agriculture, Ecosystems and Environment, 2012, 150, 102-110.	2.5	90
81	Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Scientific Reports, 2016, 6, 26710.	1.6	90
82	Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant and Soil, 2015, 391, 265-282.	1.8	89
83	Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil, 2004, 261, 219-229.	1.8	88
84	Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils. Environmental Pollution, 2018, 232, 514-522.	3.7	88
85	Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Environmental Pollution, 2014, 189, 176-183.	3.7	87
86	Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Scientific Reports, 2016, 6, 24902.	1.6	87
87	Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research, 2014, 163, 1-9.	2.3	86
88	Uptake and Acropetal Translocation of Polycyclic Aromatic Hydrocarbons by Wheat (Triticum) Tj ETQq0 0 0 rgB1 3556-3560.	[/Overloc 4.6	k 10 Tf 50 14 84
89	The impact of alternative cropping systems on global warming potential, grain yield and groundwater use. Agriculture, Ecosystems and Environment, 2015, 203, 46-54.	2.5	82
90	Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi	4.2	81

caerulescens grown in a Źn/Cd-contaminated soil. Chemosphere, 2000, 41, 161-164.

6

#	Article	IF	CITATIONS
91	Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Environmental Pollution, 2008, 156, 1304-1313.	3.7	81
92	Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Research, 2013, 154, 53-64.	2.3	81
93	Changes in soil carbon and nitrogen pools in a Mollisol after long-term fallow or application of chemical fertilizers, straw or manures. Soil and Tillage Research, 2016, 163, 255-265.	2.6	81
94	Occurrence and distribution of heavy metals and tetracyclines in agricultural soils after typical land use change in east China. Environmental Science and Pollution Research, 2013, 20, 8342-8354.	2.7	80
95	Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of south China. Applied Soil Ecology, 2018, 128, 23-34.	2.1	80
96	Levels, distributions and sources of veterinary antibiotics in the sediments of the Bohai Sea in China and surrounding estuaries. Marine Pollution Bulletin, 2016, 109, 597-602.	2.3	79
97	Intercropping Enhances Productivity and Maintains the Most Soil Fertility Properties Relative to Sole Cropping. PLoS ONE, 2014, 9, e113984.	1.1	79
98	Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi in China: a review. Mycorrhiza, 2006, 16, 229-239.	1.3	78
99	Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa). Science of the Total Environment, 2019, 646, 212-219.	3.9	78
100	Microplastics in an agricultural soil following repeated application of three types of sewage sludge: A field study. Environmental Pollution, 2021, 289, 117943.	3.7	78
101	Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties. Environmental Pollution, 2008, 151, 470-476.	3.7	76
102	Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013, 150, 52-62.	2.3	76
103	Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 2006, 28, 111-119.	1.8	74
104	Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. Journal of Hazardous Materials, 2011, 186, 1438-1444.	6.5	74
105	Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza, 2014, 24, 95-107.	1.3	73
106	Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil. Biodegradation, 2010, 21, 167-178.	1.5	72
107	Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Applied Soil Ecology, 2019, 136, 67-79.	2.1	72
108	Influence of Arbuscular Mycorrhiza and <i>Rhizobium</i> on Phytoremediation by Alfalfa of an Agricultural Soil Contaminated with Weathered PCBs: A Field Study. International Journal of Phytoremediation, 2010, 12, 516-533.	1.7	71

#	Article	IF	CITATIONS
109	Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. Biogeosciences, 2011, 8, 2341-2350.	1.3	71
110	Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Research, 2012, 130, 19-27.	2.3	71
111	Assessment of EDTA heap leaching of an agricultural soil highly contaminated with heavy metals. Chemosphere, 2014, 117, 532-537.	4.2	71
112	Sequestration of As by iron plaque on the roots of three rice (Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer. Environmental Geochemistry and Health, 2005, 27, 169-176.	1.8	70
113	Size fractionation and characterization of nanocolloidal particles in soils. Environmental Geochemistry and Health, 2009, 31, 1-10.	1.8	70
114	Enrichment of the soil microbial community in the bioremediation of a petroleum-contaminated soil amended with rice straw or sawdust. Chemosphere, 2019, 224, 265-271.	4.2	69
115	Title is missing!. Plant and Soil, 2001, 230, 279-285.	1.8	68
116	Exposure of a Soil Collembolan to Ag Nanoparticles and AgNO ₃ Disturbs Its Associated Microbiota and Lowers the Incidence of Antibiotic Resistance Genes in the Gut. Environmental Science & Technology, 2018, 52, 12748-12756.	4.6	67
117	Application of biosolids drives the diversity of antibiotic resistance genes in soil and lettuce at harvest. Soil Biology and Biochemistry, 2018, 122, 131-140.	4.2	67
118	Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza, 2004, 14, 347-354.	1.3	66
119	Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecological Research, 2009, 24, 1345-1350.	0.7	66
120	Occurrence of phthalate esters in river sediments in areas with different land use patterns. Science of the Total Environment, 2014, 500-501, 113-119.	3.9	65
121	DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environmental Pollution, 2008, 151, 569-575.	3.7	64
122	Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production. Soil and Tillage Research, 2010, 107, 80-87.	2.6	64
123	Root distribution and interactions in jujube tree/wheat agroforestry system. Agroforestry Systems, 2013, 87, 929-939.	0.9	64
124	Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the <scp>T</scp> ibetan <scp>P</scp> lateau. Environmental Microbiology, 2015, 17, 2841-2857.	1.8	64
125	Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere, 2003, 50, 831-837.	4.2	63
126	The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environmental Pollution, 2008, 156, 215-220.	3.7	63

#	Article	IF	CITATIONS
127	Cadmium bioavailability in surface soils receiving long-term applications of inorganic fertilizers and pig manure. Geoderma, 2012, 173-174, 224-230.	2.3	63
128	Non-target effects of repeated chlorothalonil application on soil nitrogen cycling: The key functional gene study. Science of the Total Environment, 2016, 543, 636-643.	3.9	63
129	Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant and Soil, 2017, 415, 1-12.	1.8	63
130	Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environment International, 2005, 31, 867-873.	4.8	62
131	Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems. Plant and Soil, 2008, 313, 55-70.	1.8	62
132	<scp>I</scp> nner <scp>M</scp> ongolian steppe arbuscular mycorrhizal fungal communities respond more strongly to water availability than to nitrogen fertilization. Environmental Microbiology, 2015, 17, 3051-3068.	1.8	62
133	Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils. Science of the Total Environment, 2018, 630, 618-629.	3.9	60
134	Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice–wheat rotations. Field Crops Research, 2005, 91, 307-318.	2.3	59
135	No significant nitrous oxide emissions during spring thaw under grazing and nitrogen addition in an alpine grassland. Global Change Biology, 2012, 18, 2546-2554.	4.2	59
136	Chemical speciation and extractability of Zn, Cu and Cd in two contrasting biosolids-amended clay soils. Chemosphere, 2003, 50, 823-829.	4.2	58
137	Degradation of Benzo[a]Pyrene in Soil with Arbuscular Mycorrhizal Alfalfa. Environmental Geochemistry and Health, 2004, 26, 285-293.	1.8	58
138	Phenanthrene adsorption by soils treated with humic substances under different pH and temperature conditions. Environmental Geochemistry and Health, 2006, 28, 189-195.	1.8	58
139	Improving prediction of metal uptake by Chinese cabbage (Brassica pekinensis L.) based on a soil-plant stepwise analysis. Science of the Total Environment, 2016, 569-570, 1595-1605.	3.9	58
140	Prepared bed bioremediation of oily sludge in an oilfield in northern China. Journal of Hazardous Materials, 2009, 161, 479-484.	6.5	57
141	Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Scientia Horticulturae, 2010, 125, 25-33.	1.7	57
142	Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulphur and EDTA. Plant and Soil, 2004, 261, 181-188.	1.8	56
143	Behavior of decabromodiphenyl ether (BDE-209) in soil: Effects of rhizosphere and mycorrhizal colonization of ryegrass roots. Environmental Pollution, 2011, 159, 749-753.	3.7	56
144	Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. European Journal of Soil Biology, 2016, 76, 53-60.	1.4	56

#	Article	IF	CITATIONS
145	Effect of mixed soil microbiomes on pyrene removal and the response of the soil microorganisms. Science of the Total Environment, 2018, 640-641, 9-17.	3.9	56
146	Biogeography and diversity patterns of abundant and rare bacterial communities in rice paddy soils across China. Science of the Total Environment, 2020, 730, 139116.	3.9	56
147	Agronomic Value of Alkalineâ€ S tabilized Sewage Biosolids for Spring Barley. Agronomy Journal, 2001, 93, 144-151.	0.9	55
148	Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil—a preliminary study. Science of the Total Environment, 2005, 339, 179-187.	3.9	55
149	Allelopathic potential of watermelon tissues and root exudates. Scientia Horticulturae, 2007, 112, 315-320.	1.7	55
150	Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland. FEMS Microbiology Ecology, 2015, 91, fiv078.	1.3	55
151	Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil. Soil Biology and Biochemistry, 2020, 144, 107790.	4.2	55
152	Crop Yields, Internal Nutrient Efficiency, and Changes in Soil Properties in Rice–Wheat Rotations Under Non-Flooded Mulching Cultivation. Plant and Soil, 2005, 277, 265-276.	1.8	54
153	Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola. Environmental Science and Pollution Research, 2013, 20, 6306-6316.	2.7	54
154	Distribution of heavy metals in soils of the Yellow River Delta: concentrations in different soil horizons and source identification. Journal of Soils and Sediments, 2014, 14, 1158-1168.	1.5	54
155	Grassland Soil Microbial Biomass and Accumulation of Potentially Toxic Metals from Long-Term Slurry Application. Journal of Applied Ecology, 1989, 26, 597.	1.9	53
156	Effects of long-term fertilizer applications on peanut yield and quality and plant and soil heavy metal accumulation. Pedosphere, 2020, 30, 555-562.	2.1	53
157	Nitrogen in Two Contrasting Antarctic Bryophyte Communities. Journal of Ecology, 1987, 75, 73.	1.9	52
158	Soil Type Driven Change in Microbial Community Affects Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 55, 4648-4657.	Td (adipa 4.6	ite- <i>co52</i>
159	Adsorption of mercury on lignin: Combined surface complexation modeling andÂX-ray absorption spectroscopy studies. Environmental Pollution, 2012, 162, 255-261.	3.7	51
160	Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil. Plant and Soil, 2015, 389, 109-119.	1.8	51
161	Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Global Change Biology, 2021, 27, 202-214.	4.2	51
162	Nitrogen deposition and its contribution to nutrient inputs to intensively managed agricultural ecosystems. Ecological Applications, 2010, 20, 80-90.	1.8	50

#	Article	IF	CITATIONS
163	Isolation and Identification of a Di-(2-Ethylhexyl) Phthalate-Degrading Bacterium and Its Role in the Bioremediation of a Contaminated Soil. Pedosphere, 2015, 25, 202-211.	2.1	50
164	Root-induced soil acidification and cadmium mobilization in the rhizosphere of Sedum plumbizincicola: evidence from a high-resolution imaging study. Plant and Soil, 2019, 436, 267-282.	1.8	50
165	Are mycorrhizas absent from the antarctic?. Transactions of the British Mycological Society, 1983, 80, 557-560.	0.6	49
166	Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant and Soil, 2004, 262, 351-361.	1.8	49
167	Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in north China. Science of the Total Environment, 2018, 616-617, 1505-1512.	3.9	49
168	Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant and Soil, 2004, 261, 99-105.	1.8	48
169	Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. Journal of Environmental Sciences, 2007, 19, 1245-1251.	3.2	48
170	Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere, 2003, 50, 863-869.	4.2	47
171	Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China. Plant and Soil, 2011, 342, 221-231.	1.8	47
172	Interspecific interactions alter root length density, root diameter and specific root length in jujube/wheat agroforestry systems. Agroforestry Systems, 2014, 88, 835-850.	0.9	47
173	Temporal and spatial distribution of roots as affected by interspecific interactions in a young walnut/wheat alley cropping system in northwest China. Agroforestry Systems, 2015, 89, 327-343.	0.9	47
174	Agronomic and environmental causes of yield and nitrogen use efficiency gaps in Chinese rice farming systems. European Journal of Agronomy, 2018, 93, 40-49.	1.9	47
175	Facile method for the preparation of superhydrophobic cellulosic paper. Applied Surface Science, 2019, 496, 143648.	3.1	47
176	Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 2019, 436, 173-192.	1.8	47
177	Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals in plant communities of Junggar Basin, northwest China. Applied Soil Ecology, 2007, 35, 10-20.	2.1	46
178	PHYTOREMEDIATION OF SOIL CONTAMINATED WITH CADMIUM, COPPER AND POLYCHLORINATED BIPHENYLS. International Journal of Phytoremediation, 2012, 14, 570-584.	1.7	46
179	EFFECTS OF ORGANIC AMENDMENTS ON CD, ZN AND CU BIOAVAILABILITY IN SOIL WITH REPEATED PHYTOREMEDIATION BY <i>SEDUM PLUMBIZINCICOLA</i> . International Journal of Phytoremediation, 2012, 14, 1024-1038.	1.7	46
180	Land Use Influences Antibiotic Resistance in the Microbiome of Soil Collembolans <i>Orchesellides sinensis</i> . Environmental Science & Technology, 2018, 52, 14088-14098.	4.6	46

#	Article	IF	CITATIONS
181	The influence of neighbouring grassland plants on each others' endomycorrhizas and root-surface microorganisms. Soil Biology and Biochemistry, 1978, 10, 521-527.	4.2	45
182	New Insights into the Influence of Heavy Metals on Phenanthrene Sorption in Soils. Environmental Science & Technology, 2010, 44, 7846-7851.	4.6	45
183	Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species. Chemosphere, 2017, 182, 137-142.	4.2	45
184	Response of soil enzymes and microbial communities to root extracts of the alien <i>Alternanthera philoxeroides</i> . Archives of Agronomy and Soil Science, 2018, 64, 708-717.	1.3	45
185	Control of Fusarium Wilt of Cucumber Seedlings by Inoculation with an Arbuscular Mycorrhical Fungus. Journal of Plant Nutrition, 2005, 28, 1961-1974.	0.9	44
186	Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean. Plant and Soil, 2007, 291, 1-13.	1.8	44
187	Influence of external zinc and phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque. Plant and Soil, 2007, 300, 105-115.	1.8	44
188	Arbuscular mycorrhizal fungi associated with wild forage plants in typical steppe of eastern Inner Mongolia. European Journal of Soil Biology, 2009, 45, 321-327.	1.4	44
189	Removal of phthalic esters from contaminated soil using different cropping systems: A field study. European Journal of Soil Biology, 2012, 50, 76-82.	1.4	44
190	Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil. Journal of Environmental Sciences, 2012, 24, 926-933.	3.2	44
191	Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola. Environmental Pollution, 2016, 209, 123-131.	3.7	44
192	Cadmium Isotopic Fractionation in the Soil–Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species. Environmental Science & Technology, 2020, 54, 13598-13609.	4.6	44
193	Some long-term effects of slurry on grassland. Journal of Agricultural Science, 1987, 108, 529-541.	0.6	43
194	Arbuscular mycorrhizal fungi in degraded typical steppe of inner Mongolia. Land Degradation and Development, 2009, 20, 41-54.	1.8	43
195	Rape (Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis(2-ethylhexyl) phthalate. Environmental Science and Pollution Research, 2013, 20, 5289-5298.	2.7	43
196	High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Plant and Soil, 2015, 397, 387-399.	1.8	43
197	Sustained production of superoxide radicals by manganese oxides under ambient dark conditions. Water Research, 2021, 196, 117034.	5.3	43
198	Improved Approaches for Modeling the Sorption of Phenanthrene by a Range of Plant Species. Environmental Science & Technology, 2007, 41, 7818-7823.	4.6	42

#	Article	IF	CITATIONS
199	Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment. Science of the Total Environment, 2008, 394, 230-236.	3.9	42
200	Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. Environmental Pollution, 2009, 157, 1613-1618.	3.7	42
201	Accumulation and chemical fractionation of Cu in a paddy soil irrigated with Cu-rich wastewater. Geoderma, 2003, 115, 113-120.	2.3	41
202	Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza, 2006, 16, 269-275.	1.3	41
203	An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics. Atmospheric Environment, 2013, 74, 209-216.	1.9	41
204	Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Chemosphere, 2018, 194, 432-440.	4.2	41
205	Function of Biohydrogen Metabolism and Related Microbial Communities in Environmental Bioremediation. Frontiers in Microbiology, 2019, 10, 106.	1.5	41
206	The specificity of arbuscular mycorrhizal fungi in perennial ryegrass–white clover pasture. Agriculture, Ecosystems and Environment, 2000, 77, 211-218.	2.5	40
207	Iron Nutrition of Peanut Enhanced by Mixed Cropping with Maize: Possible Role of Root Morphology and Rhizosphere Microflora. Journal of Plant Nutrition, 2003, 26, 2093-2110.	0.9	40
208	Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne) Tj ETQq0 0 0 rg	gBT /Overl 2.3	ock 10 Tf 50 40
209	Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge. Chemosphere, 2012, 87, 1105-1110.	4.2	40
210	Dynamics of plant metal uptake and metal changes in whole soil and soil particle fractions during repeated phytoextraction. Plant and Soil, 2014, 374, 857-869.	1.8	40
211	Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties. Science of the Total Environment, 2016, 541, 348-355.	3.9	40
212	A preliminary survey of the arbuscular mycorrhizal status of grassland plants in southern Tibet. Mycorrhiza, 2006, 16, 191-196.	1.3	39
213	Geographical and plant genotype effects on the formation of arbuscular mycorrhiza in Avena sativa and Avena nuda at different soil depths. Biology and Fertility of Soils, 2010, 46, 435-443.	2.3	39
214	Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Scientific Reports, 2017, 7, 3067.	1.6	39
215	Temporal Differentiation of Crop Growth as One of the Drivers of Intercropping Yield Advantage. Scientific Reports, 2018, 8, 3110.	1.6	39
216	Estimating cadmium availability to the hyperaccumulator Sedum plumbizincicola in a wide range of soil types using a piecewise function. Science of the Total Environment, 2018, 637-638, 1342-1350.	3.9	39

#	Article	IF	CITATIONS
217	Vesicular-arbuscular mycorrhiza infection in cut grassland following long-term slurry application. Soil Biology and Biochemistry, 1992, 24, 325-330.	4.2	38
218	A study on the improvement iron nutrition of peanut intercropping with maize on nitrogen fixation at early stages of growth of peanut on a calcareous soil. Soil Science and Plant Nutrition, 2004, 50, 1071-1078.	0.8	38
219	Major nutrients, heavy metals and PBDEs in soils after long-term sewage sludge application. Journal of Soils and Sediments, 2012, 12, 531-541.	1.5	38
220	Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant and Soil, 2016, 406, 173-185.	1.8	38
221	Assessment of phytoextraction using Sedum plumbizincicola and rice production in Cd-polluted acid paddy soils of south China: A field study. Agriculture, Ecosystems and Environment, 2019, 286, 106651.	2.5	38
222	Sorption mechanisms of diphenylarsinic acid on ferrihydrite, goethite and hematite using sequential extraction, FTIR measurement and XAFS spectroscopy. Science of the Total Environment, 2019, 669, 991-1000.	3.9	38
223	The role of sewage sludge biochar in methylmercury formation and accumulation in rice. Chemosphere, 2019, 218, 527-533.	4.2	38
224	Nutrients Can Enhance Phytoremediation of Copper-Polluted Soil by Indian Mustard. Environmental Geochemistry and Health, 2004, 26, 331-335.	1.8	37
225	Effects of alfalfa and organic fertilizer on benzo[a]pyrene dissipation in an aged contaminated soil. Environmental Science and Pollution Research, 2012, 19, 1605-1611.	2.7	37
226	Long-term nutrient fertilization and the carbon balance of permanent grassland: any evidence for sustainable intensification?. Biogeosciences, 2016, 13, 4975-4984.	1.3	37
227	Pyrolysis of Sedum plumbizincicola, a zinc and cadmium hyperaccumulator: pyrolysis kinetics, heavy metal behaviour and bio-oil production. Clean Technologies and Environmental Policy, 2016, 18, 2315-2323.	2.1	37
228	Rhodococcus sp. NSX2 modulates the phytoremediation efficiency of a trace metal-contaminated soil by reshaping the rhizosphere microbiome. Applied Soil Ecology, 2019, 133, 62-69.	2.1	37
229	RESPONSES OF LEGUME AND NON-LEGUME CROP SPECIES TO HEAVY METALS IN SOILS WITH MULTIPLE METAL CONTAMINATION. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 611-621.	0.9	36
230	Facilitating Effects of Metal Cations on Phenanthrene Sorption in Soils. Environmental Science & Technology, 2008, 42, 2414-2419.	4.6	36
231	A Multiyear Assessment of Air Quality Benefits from China's Emerging Shale Gas Revolution: Urumqi as a Case Study. Environmental Science & Technology, 2015, 49, 2066-2072.	4.6	36
232	Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat. Scientific Reports, 2015, 5, 8122.	1.6	36
233	Improved Nitrogen Management for an Intensive Winter Wheat/Summer Maize Doubleâ€cropping System. Soil Science Society of America Journal, 2012, 76, 286-297.	1.2	35
234	Novel use of soil moisture samplers for studies on anaerobic ammonium fluxes across lake sediment–water interfaces. Chemosphere, 2003, 50, 711-715.	4.2	34

#	Article	IF	CITATIONS
235	Screening Chinese Wheat Germplasm for Phosphorus Efficiency in Calcareous Soils. Journal of Plant Nutrition, 2005, 28, 489-505.	0.9	34
236	Polycyclic aromatic hydrocarbon concentrations in urban soils representing different land use categories in Shanghai. Environmental Earth Sciences, 2011, 62, 33-42.	1.3	34
237	Rhizosphere Concentrations of Zinc and Cadmium in a Metal Contaminated Soil After Repeated Phytoextraction By <i>Sedum Plumbizincicola</i> . International Journal of Phytoremediation, 2011, 13, 750-764.	1.7	34
238	Effects of soil drying and wetting-drying cycles on the availability of heavy metals and their relationship to dissolved organic matter. Journal of Soils and Sediments, 2015, 15, 1510-1519.	1.5	34
239	Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) by <i>Trichoderma reesei</i> FS10-C and Effect of Bioaugmentation on an Aged PAH-Contaminated Soil. Bioremediation Journal, 2015, 19, 9-17.	1.0	34
240	Effect of white clover cultivar on apparent transfer of nitrogen from clover to grass and estimation of relative turnover rates of nitrogen in roots. Plant and Soil, 1996, 179, 243-253.	1.8	33
241	Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links. European Journal of Soil Biology, 2003, 39, 47-54.	1.4	33
242	Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus. Environmental and Experimental Botany, 2009, 66, 435-441.	2.0	33
243	Biological transfer of dietary cadmium in relation to nitrogen transfer and 15N fractionation in a soil collembolan-predatory mite food chain. Soil Biology and Biochemistry, 2016, 101, 207-216.	4.2	33
244	A five-year study of the impact of nitrogen addition on methane uptake in alpine grassland. Scientific Reports, 2016, 6, 32064.	1.6	33
245	Optimization of Ex-Situ Washing Removal of Polycyclic Aromatic Hydrocarbons from a Contaminated Soil Using Nano-Sulfonated Graphene. Pedosphere, 2017, 27, 527-536.	2.1	33
246	Effect of Silicon on Growth, Physiology, and Cadmium Translocation of Tobacco (Nicotiana tabacum) Tj ETQq0 C	0 rgBT /C	verlgck 10 Tf
247	Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. Journal of Soils and Sediments, 2019, 19, 2313-2321.	1.5	33
248	Detection of functional microorganisms in benzene [a] pyrene-contaminated soils using DNA-SIP technology. Journal of Hazardous Materials, 2021, 407, 124788.	6.5	33
249	Choice of Extraction Technique for Soil Reducible Trace Metals Determines the Subsequent Oxidisable Metal Fraction in Sequential Extraction Schemes. International Journal of Environmental Analytical Chemistry, 1998, 72, 59-75.	1.8	32
250	Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau. Mycorrhiza, 2006, 16, 151-157.	1.3	32
251	Prediction models for rice cadmium accumulation in Chinese paddy fields and the implications in deducing soil thresholds based on food safety standards. Environmental Pollution, 2020, 258, 113879.	3.7	32
252	Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture. Environment International, 2005, 31, 880-884.	4.8	31

#	Article	IF	CITATIONS
253	Emerging Shale Gas Revolution in China. Environmental Science & Technology, 2012, 46, 12281-12282.	4.6	31
254	Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Journal of Hazardous Materials, 2013, 261, 332-341.	6.5	31
255	Use of a hyperaccumulator and biochar to remediate an acid soil highly contaminated with trace metals and/or oxytetracycline. Chemosphere, 2018, 204, 390-397.	4.2	31
256	Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids. Environmental Science and Pollution Research, 2018, 25, 104-114.	2.7	31
257	Three-dimensional macroscopic aminosilylated nanocellulose aerogels as sustainable bio-adsorbents for the effective removal of heavy metal ions. International Journal of Biological Macromolecules, 2021, 190, 170-177.	3.6	31
258	Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels. PLoS ONE, 2017, 12, e0173957.	1.1	31
259	Effects of Nitrogen and Phosphorus Fertilizers and Intercropping on Uptake of Nitrogen and Phosphorus by Wheat, Maize, and Faba Bean. Journal of Plant Nutrition, 2003, 26, 629-642.	0.9	30
260	Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Science in China Series C: Life Sciences, 2005, 48, 156-164.	1.3	30
261	Impact of the earthworm Aporrectodea trapezoides and the arbuscular mycorrhizal fungus Glomus intraradices on 15N uptake by maize from wheat straw. Biology and Fertility of Soils, 2013, 49, 263-271.	2.3	30
262	A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid esters in contaminated soils. Frontiers of Environmental Science and Engineering, 2013, 7, 31-42.	3.3	30
263	Oxytetracycline Toxicity and Its Effect on Phytoremediation by <i>Sedum plumbizincicola</i> and <i>Medicago sativa</i> in Metal-Contaminated Soil. Journal of Agricultural and Food Chemistry, 2016, 64, 8045-8053.	2.4	30
264	Levels and patterns of organochlorine pesticides in agricultural soils in an area of extensive historical cotton cultivation in Henan province, China. Environmental Science and Pollution Research, 2016, 23, 6680-6689.	2.7	30
265	Rhizobial symbiosis alleviates polychlorinated biphenyls-induced systematic oxidative stress via brassinosteroids signaling in alfalfa. Science of the Total Environment, 2017, 592, 68-77.	3.9	30
266	Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan island, China. Mycorrhiza, 2006, 16, 81-87.	1.3	29
267	Effects of applied urea and straw on various nitrogen fractions in two Chinese paddy soils with differing clay mineralogy. Biology and Fertility of Soils, 2012, 48, 161-172.	2.3	29
268	Characteristics of residual organochlorine pesticides in soils under different land-use types on a coastal plain of the Yellow River Delta. Environmental Geochemistry and Health, 2016, 38, 535-547.	1.8	29
269	Seasonal temperatures have more influence than nitrogen fertilizer rates on cucumber yield and nitrogen uptake in a double cropping system. Environmental Pollution, 2008, 151, 443-451.	3.7	28
270	Cadmium distribution in rice plants grown in three different soils after application of pig manure with added cadmium. Environmental Geochemistry and Health, 2012, 34, 481-492.	1.8	28

#	Article	IF	CITATIONS
271	Atmospheric deposition of cadmium in an urbanized region and the effect of simulated wet precipitation on the uptake performance of rice. Science of the Total Environment, 2020, 700, 134513.	3.9	28
272	Surface water phosphorus dynamics in rice fields receiving fertiliser and manure phosphorus. Chemosphere, 2001, 42, 209-214.	4.2	27
273	Uptake of Atrazine and Cadmium from Soil by Maize (Zea maysL.) in Association with the Arbuscular Mycorrhizal FungusGlomus etunicatum. Journal of Agricultural and Food Chemistry, 2006, 54, 9377-9382.	2.4	26
274	Spatiotemporal changes in arbuscular mycorrhizal fungal communities under different nitrogen inputs over a 5-year period in intensive agricultural ecosystems on the North China Plain. FEMS Microbiology Ecology, 2014, 90, n/a-n/a.	1.3	26
275	Concentrations of arsenic, cadmium and lead in human hair and typical foods in eleven Chinese cities. Environmental Toxicology and Pharmacology, 2016, 48, 150-156.	2.0	26
276	Effects of a natural sepiolite bearing material and lime on the immobilization and persistence of cadmium in a contaminated acid agricultural soil. Environmental Science and Pollution Research, 2018, 25, 22075-22084.	2.7	26
277	Evaluation of fatty acid derivatives in the remediation of aged PAH-contaminated soil and microbial community and degradation gene response. Chemosphere, 2020, 248, 125983.	4.2	26
278	Interfacial Molecular Fractionation on Ferrihydrite Reduces the Photochemical Reactivity of Dissolved Organic Matter. Environmental Science & amp; Technology, 2021, 55, 1769-1778.	4.6	26
279	Arbuscular mycorrhizal enhancement of iron concentration by Poncirus trifoliata L. Raf and Citrus reticulata Blanco grown on sand medium under different pH. Biology and Fertility of Soils, 2008, 45, 65-72.	2.3	25
280	Partitioning of Phenanthrene by Root Cell Walls and Cell Wall Fractions of Wheat (<i>Triticum) Tj ETQq0 0 0 rg</i>	BT /Overlo 4.6	ck 10 Tf 50 3
281	Predicting bioavailability of PAHs in field-contaminated soils by passive sampling with triolein embedded cellulose acetate membranes. Environmental Pollution, 2009, 157, 545-551.	3.7	25
282	Role of Carbon Substrates Added in the Transformation of Surplus Nitrate to Organic Nitrogen in a Calcareous Soil. Pedosphere, 2013, 23, 205-212.	2.1	25
283	Effects of biochar on the migration and transformation of metal species in a highly acid soil contaminated with multiple metals and leached with solutions of different pH. Chemosphere, 2021, 278, 130344.	4.2	25
284	Short-term immobilization of ammonium and nitrate added to a grassland soil. Soil Biology and Biochemistry, 2001, 33, 1277-1278.	4.2	24
285	FACTORS AFFECTING ARBUSCULAR MYCORRHIZAL DEPENDENCY OF WHEAT GENOTYPES WITH DIFFERENT PHOSPHORUS EFFICIENCIES. Journal of Plant Nutrition, 2001, 24, 1409-1419.	0.9	24
286	Use of a multi-layer column device for study on leachability of nitrate in sludge-amended soils. Chemosphere, 2003, 52, 1483-1488.	4.2	24
287	Physiological and Antioxidant Responses of Germinating Mung Bean Seedlings to Phthalate Esters in Soil. Pedosphere, 2014, 24, 107-115.	2.1	24
288	Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil. Science of the Total Environment, 2021, 792, 148411.	3.9	24

#	Article	IF	CITATIONS
289	Combined inoculation with dark septate endophytes and arbuscular mycorrhizal fungi: synergistic or competitive growth effects on maize?. BMC Plant Biology, 2021, 21, 498.	1.6	24
290	Influence of extramatrical hyphae on mycorrhizal dependency of wheat genotypes. Communications in Soil Science and Plant Analysis, 2001, 32, 3307-3317.	0.6	23
291	Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: A 15N tracer study. Environmental Pollution, 2007, 146, 534-542.	3.7	23
292	Biomimetic accumulation of PAHs from soils by triolein-embedded cellulose acetate membranes (TECAMs) to estimate their bioavailability. Water Research, 2008, 42, 754-762.	5.3	23
293	Botanical composition, production and nutrient status of an originally Lolium perenne-dominant cut grass sward receiving long-term manure applications. Plant and Soil, 2010, 326, 355-367.	1.8	23
294	Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass. Frontiers of Environmental Science and Engineering, 2012, 6, 330-335.	3.3	23
295	Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	23
296	Ecotoxicity of cadmium in a soil collembolan-predatory mite food chain: Can we use the 15N labeled litter addition method to assess soilÂfunctional change?. Environmental Pollution, 2016, 219, 37-46.	3.7	23
297	Biodegradation of pentachloronitrobenzene by Cupriavidus sp. YNS-85 and its potential for remediation of contaminated soils. Environmental Science and Pollution Research, 2017, 24, 9538-9547.	2.7	23
298	Modulation of the efficiency of trace metal phytoremediation by Sedum plumbizincicola by microbial community structure and function. Plant and Soil, 2017, 421, 285-299.	1.8	23
299	Toxicity of phthalate esters to lettuce (Lactuca sativa) and the soil microbial community under different soil conditions. PLoS ONE, 2018, 13, e0208111.	1.1	23
300	Changes in clover rhizosphere microbial community and diazotrophs in mercury-contaminated soils. Science of the Total Environment, 2021, 767, 145473.	3.9	23
301	The role of arbuscular mycorrhizal fungi in the transfer of nutrients between white clover and perennial ryegrass. Chemosphere, 2001, 42, 153-159.	4.2	22
302	Pungency of Spring Onion as Affected by Inoculation with Arbuscular Mycorrhizal Fungi and Sulfur Supply. Journal of Plant Nutrition, 2007, 30, 1023-1034.	0.9	22
303	Response of Two Maize Inbred Lines with Contrasting Phosphorus Efficiency and Root Morphology to Mycorrhizal Colonization at Different Soil Phosphorus Supply Levels. Journal of Plant Nutrition, 2008, 31, 1059-1073.	0.9	22
304	Excessive Nitrogen Inputs in Intensive Greenhouse Cultivation May Influence Soil Microbial Biomass and Community Composition. Communications in Soil Science and Plant Analysis, 2009, 40, 2323-2337.	0.6	22
305	Isolation and Characterization of Chlorothalonil-Degrading Bacterial Strain H4 and Its Potential for Remediation of Contaminated Soil. Pedosphere, 2014, 24, 799-807.	2.1	22
306	Antioxidant enzyme activities of Folsomia candida and avoidance of soil metal contamination. Environmental Science and Pollution Research, 2018, 25, 2889-2898.	2.7	22

#	Article	IF	CITATIONS
307	Influencing mechanisms of hematite on benzo(a)pyrene degradation by the PAH-degrading bacterium Paracoccus sp. Strain HPD-2: insight from benzo(a)pyrene bioaccessibility and bacteria activity. Journal of Hazardous Materials, 2018, 359, 348-355.	6.5	22
308	Aluminum toxicity decreases the phytoextraction capability by cadmium/zinc hyperaccumulator Sedum plumbizincicola in acid soils. Science of the Total Environment, 2020, 711, 134591.	3.9	22
309	Grassland species can influence the abundance of microbes on each other's roots. Nature, 1974, 250, 570-571.	13.7	21
310	Effect of Long-Term Fertilization on Organic Nitrogen Forms in a Calcareous Alluvial Soil on the North China Plain. Pedosphere, 2006, 16, 224-229.	2.1	21
311	Degradation of benzo[a]pyrene in an experimentally contaminated paddy soil by vetiver grass (Vetiveria) Tj ETQq	1 0.7843 1.8	314 rgBT /0
312	Atmospheric reactive nitrogen concentrations at ten sites with contrasting land use in an arid region of central Asia. Biogeosciences, 2012, 9, 4013-4021.	1.3	21
313	Phytoextraction potential of soils highly polluted with cadmium using the cadmium/zinc hyperaccumulator <i>Sedum plumbizincicola</i> . International Journal of Phytoremediation, 2019, 21, 733-741.	1.7	21
314	Application of biodegradable seedling trays in paddy fields: Impacts on the microbial community. Science of the Total Environment, 2019, 656, 750-759.	3.9	21
315	Revegetation type drives rhizosphere arbuscular mycorrhizal fungi and soil organic carbon fractions in the mining subsidence area of northwest China. Catena, 2020, 195, 104791.	2.2	21
316	Screening of Arbuscular Mycorrhizal Fungi for Symbiotic Efficiency with Sweet Potato. Journal of Plant Nutrition, 2006, 29, 1085-1094.	0.9	20
317	Tolerance of Grasses to Heavy Metals and Microbial Functional Diversity in Soils Contaminated with Copper Mine Tailings. Pedosphere, 2008, 18, 363-370.	2.1	20
318	Response of Nitrous Oxide and Corresponding Bacteria to Managements in an Agricultural Soil. Soil Science Society of America Journal, 2012, 76, 130-141.	1.2	20
319	Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region. Nutrient Cycling in Agroecosystems, 2014, 98, 15-26.	1.1	20
320	The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination. Frontiers in Plant Science, 2015, 6, 961.	1.7	20
321	High nitrogen deposition in an agricultural ecosystem of Shaanxi, China. Environmental Science and Pollution Research, 2016, 23, 13210-13221.	2.7	20
322	Replacement of mineral fertilizers with anaerobically digested pig slurry in paddy fields: assessment of plant growth and grain quality. Environmental Science and Pollution Research, 2017, 24, 8916-8923.	2.7	20
323	Soil properties and microbial ecology of a paddy field after repeated applications of domestic and industrial sewage sludges. Environmental Science and Pollution Research, 2017, 24, 8619-8628.	2.7	20
324	Sulfur application combined with water management enhances phytoextraction rate and decreases rice cadmium uptake in a Sedum plumbizincicola - Oryza sativa rotation. Plant and Soil, 2019, 440, 539-549.	1.8	20

#	Article	IF	CITATIONS
325	Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: A field study. Environmental Pollution, 2020, 260, 114017.	3.7	20
326	Soil solution dynamics of Cu and Zn in a Cu- and Zn-polluted soil as influenced by γ-irradiation and Cu–Zn interaction. Chemosphere, 2001, 42, 179-184.	4.2	19
327	Influence of Nitrogen and Sulfur Fertilizers and Inoculation with Arbuscular Mycorrhizal Fungi on Yield and Pungency of Spring Onion. Journal of Plant Nutrition, 2006, 29, 1767-1778.	0.9	19
328	Distribution patterns of polychlorinated biphenyls in soils collected from Zhejiang province, east China. Environmental Geochemistry and Health, 2006, 28, 79-87.	1.8	19
329	Influence of inoculation with Glomus mosseae or Acaulospora morrowiae on arsenic uptake and translocation by maize. Plant and Soil, 2008, 311, 235-244.	1.8	19
330	Tenax TA extraction to understand the rate-limiting factors in methyl-Î ² -cyclodextrin-enhanced bioremediation of PAH-contaminated soil. Biodegradation, 2013, 24, 365-375.	1.5	19
331	Concentrations of Heavy Metals in Suburban Horticultural Soils and Their Uptake by Artemisia selengensis. Pedosphere, 2015, 25, 878-887.	2.1	19
332	Phytotoxicity in seven higher plant species exposed to di-n-butyl phthalate or bis (2-ethylhexyl) phthalate. Frontiers of Environmental Science and Engineering, 2015, 9, 259-268.	3.3	19
333	Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan Plateau. Mycorrhiza, 2018, 28, 605-619.	1.3	19
334	Low-Temperature Hydrothermal Carbonization of Fresh Pig Manure: Effects of Temperature on Characteristics of Hydrochars. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	19
335	Spatial distribution of PAHs in a contaminated valley in Southeast China. Environmental Geochemistry and Health, 2006, 28, 89-96.	1.8	18
336	Yield and Nicotine Content of Flue-Cured Tobacco as Affected by Soil Nitrogen Mineralization. Pedosphere, 2008, 18, 227-235.	2.1	18
337	LEGUME-GRASS INTERCROPPING PHYTOREMEDIATION OF PHTHALIC ACID ESTERS IN SOIL NEAR AN ELECTRONIC WASTE RECYCLING SITE: A FIELD STUDY. International Journal of Phytoremediation, 2013, 15, 154-167.	1.7	18
338	Adsorption and desorption characteristics of diphenylarsenicals in two contrasting soils. Journal of Environmental Sciences, 2013, 25, 1172-1179.	3.2	18
339	Phytoextraction of Cadmium and Zinc BySedum plumbizincicolaUsing Different Nitrogen Fertilizers, a Nitrification Inhibitor and a Urease Inhibitor. International Journal of Phytoremediation, 2015, 17, 382-390.	1.7	18
340	Efficiency of Repeated Phytoextraction of Cadmium and Zinc from an Agricultural Soil Contaminated with Sewage Sludge. International Journal of Phytoremediation, 2015, 17, 575-582.	1.7	18
341	The efficiency of Cd phytoextraction by S. plumbizincicola increased with the addition of rice straw to polluted soils: the role of particulate organic matter. Plant and Soil, 2018, 429, 321-333.	1.8	18
342	Responses of the grass Paspalum distichum L. to Hg stress: A proteomic study. Ecotoxicology and Environmental Safety, 2019, 183, 109549.	2.9	18

#	Article	IF	CITATIONS
343	Influence of [S, S]-EDDS on Phytoextraction of Copper and Zinc byElsholtzia SplendensFrom Metal-Contaminated Soil. International Journal of Phytoremediation, 2007, 9, 227-241.	1.7	17
344	Effects of Nitrogen on Root Development and Contents of Bioactive Compounds in <i>Salvia miltiorrhiza</i> Bunge. Crop Science, 2013, 53, 2028-2039.	0.8	17
345	Long-term phosphorus application to a maize monoculture influences the soil microbial community and its feedback effects on maize seedling biomass. Applied Soil Ecology, 2018, 128, 12-22.	2.1	17
346	Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol. PLoS ONE, 2020, 15, e0230593.	1.1	17
347	Response of ecological stoichiometry and stoichiometric homeostasis in the plant-litter-soil system to re-vegetation type in arid mining subsidence areas. Journal of Arid Environments, 2021, 184, 104298.	1.2	17
348	Effect of Elemental Sulphur on Uptake of Cadmium, Zinc, and Sulphur by Oilseed Rape Growing in Soil Contaminated with Zinc and Cadmium. Communications in Soil Science and Plant Analysis, 2004, 35, 2905-2916.	0.6	16
349	Long-term application of animal slurries to grassland alters soil cation balance. Soil Use and Management, 2005, 21, 240-244.	2.6	16
350	Response of Tomato on Calcareous Soils to Different Seedbed Phosphorus Application Rates. Pedosphere, 2007, 17, 70-76.	2.1	16
351	Responses of earthworm species to long-term applications of slurry. Applied Soil Ecology, 2015, 96, 60-67.	2.1	16
352	Cumulative effects of repeated chlorothalonil application on soil microbial activity and community in contrasting soils. Journal of Soils and Sediments, 2016, 16, 1754-1763.	1.5	16
353	Uptake of silver by brown rice and wheat in soils repeatedly amended with biosolids. Science of the Total Environment, 2018, 612, 94-102.	3.9	16
354	The role of antibiotics in mercury methylation in marine sediments. Journal of Hazardous Materials, 2018, 360, 1-5.	6.5	16
355	Quantifying soil N pools and N2O emissions after application of chemical fertilizer and straw to a typical chernozem soil. Biology and Fertility of Soils, 2020, 56, 319-329.	2.3	16
356	Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management. PLoS ONE, 2015, 10, e0140023.	1.1	15
357	Influence of Rapeseed Cake on Heavy Metal Uptake by a Subsequent Rice Crop After Phytoextraction Using <i>Sedum plumbizincicola</i> . International Journal of Phytoremediation, 2015, 17, 76-84.	1.7	15
358	Infectivity and community composition of arbuscular mycorrhizal fungi from different soil depths in intensively managed agricultural ecosystems. Journal of Soils and Sediments, 2015, 15, 1200-1211.	1.5	15
359	Repeated phytoextraction of metal contaminated calcareous soil by hyperaccumulator <i>Sedum plumbizincicola</i> . International Journal of Phytoremediation, 2018, 20, 1243-1249.	1.7	15
360	Evidence for niche differentiation of nitrifying communities in grassland soils after 44 years of different field fertilization scenarios. Pedosphere, 2020, 30, 87-97.	2.1	15

#	Article	IF	CITATIONS
361	Acid buffering capacity of four contrasting metal-contaminated calcareous soil types: Changes in soil metals and relevance to phytoextraction. Chemosphere, 2020, 256, 127045.	4.2	15
362	The inhibitory mechanism of natural soil colloids on the biodegradation of polychlorinated biphenyls by a degrading bacterium. Journal of Hazardous Materials, 2021, 415, 125687.	6.5	15
363	Effects of Arbuscular Mycorrhizal Fungi and Ammonium: Nitrate Ratios on Growth and Pungency of Onion Seedlings. Journal of Plant Nutrition, 2006, 29, 1047-1059.	0.9	14
364	Predicting Bioavailability of PAHs in Soils to Wheat Roots with Triolein-Embedded Cellulose Acetate Membranes and Comparison with Chemical Extraction. Journal of Agricultural and Food Chemistry, 2008, 56, 10817-10823.	2.4	14
365	Successive chlorothalonil applications inhibit soil nitrification and discrepantly affect abundances of functional genes in soil nitrogen cycling. Environmental Science and Pollution Research, 2017, 24, 3562-3571.	2.7	14
366	The effects of aquaculture on mercury distribution, changing speciation, and bioaccumulation in a reservoir ecosystem. Environmental Science and Pollution Research, 2017, 24, 25923-25932.	2.7	14
367	Exploring bacterial community structure and function associated with polychlorinated biphenyl biodegradation in two hydrogen-amended soils. Science of the Total Environment, 2020, 745, 140839.	3.9	14
368	Changes in soil microbial biomass and Zn extractability over time following Zn addition to a paddy soil. Chemosphere, 2003, 50, 855-861.	4.2	13
369	China steps up its efforts in research and development to combat environmental pollution. Environmental Pollution, 2007, 147, 301-302.	3.7	13
370	Influence of Iron Fertilization on Cadmium Uptake by Rice Seedlings Irrigated with Cadmium Solution. Communications in Soil Science and Plant Analysis, 2010, 41, 584-594.	0.6	13
371	Anthropogenic mercury sequestration in different soil types on the southeast coast of China. Journal of Soils and Sediments, 2015, 15, 962-971.	1.5	13
372	Metal contamination status of the soil-plant system and effects on the soil microbial community near a rare metal recycling smelter. Environmental Science and Pollution Research, 2016, 23, 17625-17634.	2.7	13
373	Direct effects of soil cadmium on the growth and activity of arbuscular mycorrhizal fungi. Rhizosphere, 2018, 7, 43-48.	1.4	13
374	Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility. Journal of Central South University, 2019, 26, 2987-2997.	1.2	13
375	A red clay layer in soils of the Yellow River Delta: Occurrence, properties and implications for elemental budgets and biogeochemical cycles. Catena, 2019, 172, 469-479.	2.2	13
376	Microbial remediation of a pentachloronitrobenzene-contaminated soil under Panax notoginseng: A field experiment. Pedosphere, 2020, 30, 563-569.	2.1	13
377	Cadmium and Lead Pollution Characteristics of Soils, Vegetables and Human Hair Around an Openâ€cast Leadâ€zinc Mine. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1176-1183.	1.3	13
378	Toxic effects of norfloxacin in soil on fed and unfed Folsomia candida (Isotomidae: Collembola) and on gut and soil microbiota. Science of the Total Environment, 2021, 788, 147793.	3.9	13

#	Article	IF	CITATIONS
379	Enrichment of <scp><i>nosZ</i></scp> â€ŧype denitrifiers by arbuscular mycorrhizal fungi mitigates <scp>N₂O</scp> emissions from soybean stubbles. Environmental Microbiology, 2021, 23, 6587-6602.	1.8	13
380	Significance of sample size in measurement of soil microbial biomass by the chloroform fumigation-incubation method. Soil Biology and Biochemistry, 1987, 19, 149-152.	4.2	12
381	Effect of Inoculation with the Arbuscular Mycorrhizal Fungus <i>Glomus Intraradices</i> on the Root-Knot Nematode <i>Meloidogyne Incognita</i> in Cucumber. Journal of Plant Nutrition, 2009, 32, 967-979.	0.9	12
382	Using a Novel Petroselinic Acid Embedded Cellulose Acetate Membrane to Mimic Plant Partitioning and In Vivo Uptake of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 2010, 44, 297-301.	4.6	12
383	Refinement of Methodology for Cadmium Determination in Soil Micro-Arthropod Tissues. Pedosphere, 2017, 27, 491-501.	2.1	12
384	Effect of long-term application of animal slurries to grassland on silage quality assessed in laboratory silos. Journal of the Science of Food and Agriculture, 1995, 67, 205-213.	1.7	11
385	Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals growing under and beyond the canopies of Tamarisk shrubs. Science Bulletin, 2006, 51, 132-139.	1.7	11
386	Foraging capability of extraradical mycelium of arbuscular mycorrhizal fungi to soil phosphorus patches and evidence of carry-over effect on new host plant. Plant and Soil, 2015, 387, 201-217.	1.8	11
387	Photodegradation of diphenylarsinic acid by UV-C light: Implication for its remediation. Journal of Hazardous Materials, 2016, 308, 199-207.	6.5	11
388	Temperatureâ€mediated local adaptation alters the symbiotic function in arbuscular mycorrhiza. Environmental Microbiology, 2017, 19, 2616-2628.	1.8	11
389	Derivation of reliable empirical models describing lead transfer from metal-polluted soils to radish (Raphanus sativa L.): Determining factors and soil criteria. Science of the Total Environment, 2018, 613-614, 72-80.	3.9	11
390	Importance of AM fungi and local adaptation in plant response to environmental change: Field evidence at contrasting elevations. Fungal Ecology, 2018, 34, 59-66.	0.7	11
391	Use of a Modified N-Expert System for Vegetable Production in the Beijing Region. Journal of Plant Nutrition, 2005, 28, 475-487.	0.9	10
392	Influence of an Arbuscular Mycorrhizal Fungus on Competition for Phosphorus Between Sweet Orange and a Leguminous Herb. Journal of Plant Nutrition, 2005, 28, 2179-2192.	0.9	10
393	Survival of faecal coliforms and hygiene risks in soils treated with municipal sewage sludges. Environmental Geochemistry and Health, 2006, 28, 97-101.	1.8	10
394	Effect of phosphate on phenanthrene sorption in soils. Journal of Colloid and Interface Science, 2011, 353, 275-280.	5.0	10
395	Response of carbon dioxide emissions to sheep grazing and N application in an alpine grassland – Part 1: Effect of sheep grazing. Biogeosciences, 2014, 11, 1743-1750.	1.3	10
396	Facilitation of seedling growth and nutrient uptake by indigenous arbuscular mycorrhizal fungi in in intensive agroecosytems. Biology and Fertility of Soils, 2014, 50, 381-394.	2.3	10

#	Article	IF	CITATIONS
397	Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities. Frontiers in Plant Science, 2015, 9, 220.	1.7	10

399	Polychlorinated biphenyls in alfalfa: Accumulation, sorption and speciation in different plant parts. International Journal of Phytoremediation, 2017, 19, 732-738.	1.7	10
400	Role of phosphoric acid in the bioavailability of potentially toxic elements in hydrochars produced by hydrothermal carbonisation of sewage sludge. Waste Management, 2018, 79, 232-239.	3.7	10
401	Linkages between changes in plant and mycorrhizal fungal community composition at high versus low elevation in alpine ecosystems. Environmental Microbiology Reports, 2020, 12, 229-240.	1.0	10
402	Shifts in composition and function of soil fungal communities and edaphic properties during the reclamation chronosequence of an open-cast coal mining dump. Science of the Total Environment, 2021, 767, 144465.	3.9	10
403	Arbuscular mycorrhizal fungi alter root and foliar responses to fissure-induced root damage stress. Ecological Indicators, 2021, 127, 107800.	2.6	10
404	Allelopathic Effects of Aqueous Extracts of Alternanthera philoxeroides on the Growth of Zoysia matrella. Polish Journal of Environmental Studies, 2017, 26, 97-105.	0.6	10
405	Effects of Boron on Leaf Expansion and Intercellular Airspaces in Mung Bean in Solution Culture. Journal of Plant Nutrition, 2005, 28, 351-361.	0.9	9
406	Accumulation and phytoavailability of benzo[a]pyrene in an acid sandy soil. Environmental Geochemistry and Health, 2006, 28, 153-158.	1.8	9
407	Cd AND Zn TOLERANCE AND ACCUMULATION BYSEDUM JINIANUMIN EAST CHINA. International Journal of Phytoremediation, 2009, 11, 283-295.	1.7	9
408	Simultaneous determination of diphenylarsinic and phenylarsinic acids in amended soils by optimized solvent extraction coupled to HPLC–MS/MS. Geoderma, 2016, 270, 109-116.	2.3	9
409	Concerns about the future of Chinese fisheries based on illegal, unreported and unregulated fishing on the Hanjiang river. Fisheries Research, 2018, 199, 212-217.	0.9	9
410	Potential sources and associated risk assessment of potentially toxic elements in paddy soils of a combined urban and rural area. Environmental Science and Pollution Research, 2019, 26, 23615-23624.	2.7	9
411	Interactions between arbuscular mycorrhizal fungi and non-host Carex capillacea. Mycorrhiza, 2019, 29, 149-157.	1.3	9
412	Dynamics of ammonia oxidizers in response to different fertilization inputs in intensively managed agricultural soils. Applied Soil Ecology, 2021, 157, 103729.	2.1	9
413	Ecotoxicity of arsenic contamination toward the soil enchytraeid Enchytraeus crypticus at different biological levels: Laboratory studies. Ecotoxicology and Environmental Safety, 2021, 207, 111218.	2.9	9
414	Long-term application of animal slurries to grassland alters soil cation balance. Soil Use and Management, 2005, 21, 240-244.	2.6	9

#	Article	IF	CITATIONS
415	Relationship between a Rhizoctonia species and grassland plants. Transactions of the British Mycological Society, 1982, 79, 123-127.	0.6	8
416	Comparison between isotope dilution and acetylene reduction methods to estimate N2 fixation rate of white clover in grass/clover swards. Grass and Forage Science, 1990, 45, 295-301.	1.2	8
417	Influence of Three Arbuscular Mycorrhizal Fungi and Phosphorus on Growth and Nutrient Status of Taro. Communications in Soil Science and Plant Analysis, 2005, 36, 2383-2396.	0.6	8
418	Uptake and Translocation of Arsenic and Phosphorus inpho2Mutant and Wild Type ofArabidopsis thaliana. Journal of Plant Nutrition, 2005, 28, 1323-1336.	0.9	8
419	Benzo[a]pyrene and Phenanthrene in Municipal Sludge from the Yangtze River Delta, China. Pedosphere, 2009, 19, 523-531.	2.1	8
420	Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction. Science of the Total Environment, 2016, 569-570, 1579-1586.	3.9	8
421	Land use affects soil organic carbon of paddy soils: empirical evidence from 6280Âyears BP to present. Journal of Soils and Sediments, 2016, 16, 767-776.	1.5	8
422	Phthalate Ester Contamination in Intensively Managed Greenhouse Facilities and the Assessment of Carcinogenic and Non-Carcinogenic Risk: A Regional Study. International Journal of Environmental Research and Public Health, 2019, 16, 2818.	1.2	8
423	Temperatureâ€mediated phylogenetic assemblage of fungal communities and local adaptation in mycorrhizal symbioses. Environmental Microbiology Reports, 2019, 11, 215-226.	1.0	8
424	A review of soil potentially toxic element contamination in typical karst regions in southwest China. Current Opinion in Environmental Science and Health, 2021, 23, 100284.	2.1	8
425	Enhanced biomass and cadmium accumulation by three cadmium-tolerant plant species following cold plasma seed treatment. Journal of Environmental Management, 2021, 296, 113212.	3.8	8
426	Zero-valent iron-induced successive chemical transformation and biodegradation of lindane in historically contaminated soil: An isotope-informed metagenomic study. Journal of Hazardous Materials, 2022, 433, 128802.	6.5	8
427	Chemical fractions of copper and zinc in organicâ€rich particles from aqueous extracts of a metalâ€contaminated granite soil. Communications in Soil Science and Plant Analysis, 1996, 27, 2973-2986.	0.6	7
428	Establishment of monoxenic culture between the arbuscular mycorrhizal fungus Glomus sinuosum and Ri T-DNA-transformed carrot roots. Plant and Soil, 2004, 261, 239-244.	1.8	7
429	Evidence for functional divergence in AM fungal communities from different montane altitudes. Fungal Ecology, 2015, 16, 19-25.	0.7	7
430	Responses of arbuscular mycorrhizal symbionts to contrasting environments: field evidence along a Tibetan elevation gradient. Mycorrhiza, 2016, 26, 623-632.	1.3	7
431	Copper and zinc concentrations in human hair and popular foodstuffs in China. Human and Ecological Risk Assessment (HERA), 2017, 23, 112-124.	1.7	7
432	Phytoremediation of diphenylarsinic-acid-contaminated soil by <i>Pteris vittata</i> associated with <i>Phyllobacterium myrsinacearum</i> RC6b. International Journal of Phytoremediation, 2017, 19, 463-469.	1.7	7

#	Article	IF	CITATIONS
433	Effects of land use change on soil organic carbon sources and molecular distributions: 6280Âyears of paddy rice cropping revealed by lipid biomarkers. Journal of Soils and Sediments, 2018, 18, 12-23.	1.5	7
434	Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem. Soil Ecology Letters, 2019, 1, 14-21.	2.4	7
435	Maize/faba bean intercropping with rhizobial inoculation in a reclaimed desert soil enhances productivity and symbiotic N2 fixation and reduces apparent N losses. Soil and Tillage Research, 2021, 213, 105154.	2.6	7
436	Multigenerational exposure of the collembolan Folsomia candida to soil metals: Adaption to metal stress in soils polluted over the long term. Environmental Pollution, 2022, 292, 118242.	3.7	7
437	ROOT MICROORGANISMS IN MIXTURES AND MONOCULTURES OF GRASSLAND PLANTS. , 1979, , 161-173.		7
438	C:N ratios in two contrasting antarctic peat profiles. Soil Biology and Biochemistry, 1987, 19, 777-778.	4.2	6
439	Alkaline sewage sludge solids affect the chemical speciation and bioavailability of Cu and Zn in the rhizosphere soil solution. Soil Science and Plant Nutrition, 1997, 43, 1041-1046.	0.8	6
440	Total nitrogen deposition at key growing stages of maize and wheat as affected by pot surface area and crop variety. Plant and Soil, 2011, 339, 137-145.	1.8	6
441	Proteomic response of wheat embryos to fosthiazate stress in a protected vegetable soil. Journal of Environmental Sciences, 2012, 24, 1843-1853.	3.2	6
442	Effects of Garlic Bulb Aqueous Extract on Cucumber Seedlings, Soil Microbial Counts, and Enzyme Activities. Communications in Soil Science and Plant Analysis, 2012, 43, 2888-2896.	0.6	6
443	Reductive dechlorination of polychlorinated biphenyls is coupled to nitrogen fixation by a legume-rhizobium symbiosis. Science China Earth Sciences, 2018, 61, 285-291.	2.3	6
444	Effects of Phthalate Esters on Ipomoea aquatica Forsk. Seedlings and the Soil Microbial Community Structure under Different Soil Conditions. International Journal of Environmental Research and Public Health, 2019, 16, 3489.	1.2	6
445	Comparing chemical extraction and a piecewise function with diffusive gradients in thin films for accurate estimation of soil zinc bioavailability to <i>Sedum plumbizincicola</i> . European Journal of Soil Science, 2019, 70, 1141-1152.	1.8	6
446	Impacts of estuarine dissolved organic matter and suspended particles from fish farming on the biogeochemical cycling of mercury in Zhoushan island, eastern China Sea. Science of the Total Environment, 2020, 705, 135921.	3.9	6
447	Reducing Reagents Induce Molecular Artifacts in the Extraction of Soil Organic Matter. ACS Earth and Space Chemistry, 2020, 4, 1913-1919.	1.2	6
448	Remediation of a metal-contaminated soil by chemical washing and repeated phytoextraction: a field experiment. International Journal of Phytoremediation, 2021, 23, 1-8.	1.7	6
449	Temperature-dependent changes in active nitrifying communities in response to field fertilization legacy. Biology and Fertility of Soils, 2021, 57, 1-14.	2.3	6
450	Soil Metal Immobilization in Agricultural Land Contaminated with Cadmium and Lead: A Case Study of Effectiveness Evaluation in Lanping, Southwest China. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1227-1235.	1.3	6

#	Article	IF	CITATIONS
451	Hydrogen peroxide combined with surfactant leaching and microbial community recovery from oil sludge. Chemosphere, 2022, 286, 131750.	4.2	6
452	Thermal infrared imaging study of water status and growth of arbuscular mycorrhizal soybean (Clycine max) under drought stress. South African Journal of Botany, 2022, 146, 58-65.	1.2	6
453	Changing sensitivity to soil fungistasis with age in Drechslera rostrata spores and associated permeability changes. Transactions of the British Mycological Society, 1974, 62, 527-535.	0.6	5
454	Nitrate Transformation and N2O Emission in a Typical Intensively Managed Calcareous Fluvaquent Soil: A 15-Nitrogen Tracer Incubation Study. Communications in Soil Science and Plant Analysis, 2015, 46, 1763-1777.	0.6	5
455	Response of arbuscular mycorrhizal fungi to soil phosphorus patches depends on context. Crop and Pasture Science, 2016, 67, 1116.	0.7	5
456	Toxicity of OTC to Ipomoea aquatica Forsk. and to microorganisms in a long-term sewage-irrigated farmland soil. Environmental Science and Pollution Research, 2016, 23, 15101-15110.	2.7	5
457	Rejoinder to "Comments on Zhu et al. (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition―[Soil Biol. Biochem. 116 302–310]. Soil Biology and Biochemistry, 2018, 124, 275-276.	4.2	5
458	Enhanced bioremediation of PAH-contaminated soil by wheat bran and microbial community response. Archives of Agronomy and Soil Science, 2020, 66, 1089-1102.	1.3	5
459	Effects of electron donors on the degradation of hexachlorocyclohexane and microbial community in submerged soils. Journal of Soils and Sediments, 2020, 20, 2155-2165.	1.5	5
460	Enhancement by soil micro-arthropods of phytoextraction of metal-contaminated soils using a hyperaccumulator plant species. Plant and Soil, 2021, 464, 335-346.	1.8	5
461	Mining subsidence area reconstruction with N2-fixing plants promotes arbuscular mycorrhizal fungal biodiversity and microbial biomass C:N:P stoichiometry of cyanobacterial biocrusts. Forest Ecology and Management, 2022, 503, 119763.	1.4	5
462	Influence of kaolinite and montmorillonite on benzo[a]pyrene biodegradation by Paracoccus aminovorans HPD-2 and the underlying interface interaction mechanisms. Pedosphere, 2022, 32, 246-255.	2.1	5
463	Short-term effects of alkaline biosolids on pH and trace metals in oligotrophic forest peat and on growth of Picea sitchensis. Forestry, 2001, 74, 145-160.	1.2	4
464	Changes in Soil Solution Heavy Metal Concentrations over Time Following EDTA Addition to a Chinese Paddy Soil. Bulletin of Environmental Contamination and Toxicology, 2003, 71, 706-713.	1.3	4
465	Diversity and zonal distribution of arbuscular mycorrhizal fungi on the northern slopes of the Tianshan Mountains. Science in China Series D: Earth Sciences, 2007, 50, 135-141.	0.9	4
466	Comparison of Soil Respiration in Typical Conventional and New Alternative Cereal Cropping Systems on the North China Plain. PLoS ONE, 2013, 8, e80887.	1.1	4
467	Risk Assessment of Contamination by Potentially Toxic Metals: A Case Study in the Vicinity of an Abandoned Pyrite Mine. Minerals (Basel, Switzerland), 2019, 9, 783.	0.8	4
468	Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	4

#	Article	IF	CITATIONS
469	A COMPARATIVE STUDY OF CELLULOSE NANOWHISKERS (CNWs) AND CELLULOSE NANOFIBERS (CNFs). Cellulose Chemistry and Technology, 2021, 55, 501-510.	0.5	4
470	Nutrient and dry matter accumulation in different generations of banana at different growth stages. Fruits, 2019, 74, 82-92.	0.3	4
471	Biological transfer of silver under silver nanoparticle exposure and nitrogen transfer via a collembolan-predatory mite food-chain and ecotoxicity of silver sulfide. Soil Ecology Letters, 0, , 1.	2.4	4
472	Residual effects of clover on soil biomass carbon and nitrogen in re-seeded grass swards. Soil Biology and Biochemistry, 1986, 18, 621-627.	4.2	3
473	Influence of Potassium Supply on Growth and Uptake of Nitrogen, Phosphorus, and Potassium by Three Ectomycorrhizal Fungal Isolates In Vitro. Journal of Plant Nutrition, 2005, 28, 271-284.	0.9	3
474	Response of carbon dioxide emissions to sheep grazing and N application in an alpine grassland – Part 2: Effect of N application. Biogeosciences, 2014, 11, 1751-1757.	1.3	3
475	Accumulation and Speciation of Arsenic in Pteris vittata Gametophytes and Sporophytes: Effects of Calcium and Phosphorus. Pedosphere, 2019, 29, 540-544.	2.1	3
476	A field study of the fate of biosolid-borne silver in the soil-crop system. Environmental Pollution, 2020, 259, 113834.	3.7	3
477	Stoichiometric analysis of an arable crop–soil–microbe system after repeated fertilizer and compost application for 10 years. Journal of Soils and Sediments, 2021, 21, 1466-1475.	1.5	3
478	Rhizosphere bacterial community dynamics of the cadmium hyperaccumulator Sedum plumbizincicola under a cadmium concentration gradient during phytoextraction. Plant and Soil, 2021, 468, 375-388.	1.8	3
479	Zinc uptake and replenishment mechanisms during repeated phytoextraction using Sedum plumbizincicola revealed by stable isotope fractionation. Science of the Total Environment, 2022, 806, 151306.	3.9	3
480	Effects of a soil collembolan on the growth and metal uptake of a hyperaccumulator: Modification of root morphology and the expression of plant defense genes. Environmental Pollution, 2022, 303, 119169.	3.7	3
481	Trace element concentrations in winter cereals under intensive cultivation. Journal of the Science of Food and Agriculture, 1985, 36, 941-945.	1.7	2
482	Comparison between wet and dry oxidation methods of sample preparation for copper and zinc analysis of grassland herbage. Journal of the Science of Food and Agriculture, 1989, 48, 155-164.	1.7	2
483	Effect of long-term application of animal slurries to grass on silage feeding quality for sheep. Journal of the Science of Food and Agriculture, 1998, 78, 53-58.	1.7	2
484	Microcosm Studies on Anaerobic Phosphate Flux and Mineralization of Lake Sediment Organic Carbon. Journal of Environmental Quality, 2004, 33, 2353-2356.	1.0	2
485	Differences in phytoextraction by the cadmium and zinc hyperaccumulator <i>Sedum plumbizincicola</i> in greenhouse, polytunnel and field conditions. International Journal of Phytoremediation, 2018, 20, 1400-1407.	1.7	2
486	Contrasting effects of iron reduction on thionation of diphenylarsinic acid in a biostimulated Acrisol. Environmental Science and Pollution Research, 2020, 27, 16646-16655.	2.7	2

#	Article	IF	CITATIONS
487	Anti-tumor effect of synthetic baicalin-rare earth metal complex drugs on SMMC-7721 cells. Environmental Geochemistry and Health, 2020, 42, 3851-3864.	1.8	2
488	Influence of Lime Stabilized Sewage Sludge Cake on Heavy Metals and Dissolved Organic Substances in the Soil Solution. , 1997, , 410-424.		2
489	Dry and Wet Deposition of Inorganic Nitrogen at Urban and Rural Sites in a Semi-arid Environment. , 2012, , .		1
490	Soil Mercury Accumulation and Emissions in a Bamboo Forest in a Compact Fluorescent Lamp Manufacturing Area. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 16-22.	1.3	1
491	Alkaline stabilized sewage sludge cake as an organic fertiliser for spring barley. , 1997, , 589-590.		1
492	Response to "Commentary by J. B. Richardson on â€~Anthropogenic mercury sequestration in different soil types on the southeast coast of China' by Zhang et al. (J Soils Sediments 15:962–971.) Tj ETQq0 0 0 rg	gB T.# Overl	oc b 10 Tf 50
493	Effect of alkaline stabilized sewage sludge solids on chemical speciation and plant availability of Cu and Zn in the rhizosphere soil solution. , 1997, , 571-576.		0
494	S. I.: Metals in Mining Areas—Biogeochemistry, Risk and Remediation. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 983-983.	1.3	0
495	Thermal Infrared Evaluation of the Influence of Arbuscular Mycorrhizal Fungus and Dark Septate Endophytic Fungus on Maize Growth and Physiology. Agronomy, 2022, 12, 912.	1.3	0
496	An electro-Fenton process to treat waste liquor of a hyperaccumulator that contains potentially toxic elements and the COD. International Journal of Phytoremediation, 2021, 23, 715-725.	1.7	0
497	Effects of aging on the persistence of cadmium adsorption on organic fertilizers. International Journal of Environmental Science and Technology, 0, , .	1.8	0