## **Huajing Fang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3324259/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Materials Horizons, 2018, 5, 1000-1007.                                                         | 12.2 | 129       |
| 2  | Solutionâ€Processed Selfâ€Powered Transparent Ultraviolet Photodetectors with Ultrafast Response<br>Speed for Highâ€Performance Communication System. Advanced Functional Materials, 2019, 29, 1809013.                  | 14.9 | 123       |
| 3  | A self-powered photodetector based on a CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> single crystal with asymmetric electrodes. CrystEngComm, 2016, 18, 4405-4411.                                                   | 2.6  | 95        |
| 4  | A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. Journal of Materials Chemistry C, 2016, 4, 630-636.                                          | 5.5  | 87        |
| 5  | A Stretchable Nanogenerator with Electric/Light Dualâ€Mode Energy Conversion. Advanced Energy<br>Materials, 2016, 6, 1600829.                                                                                            | 19.5 | 74        |
| 6  | An Origami Perovskite Photodetector with Spatial Recognition Ability. ACS Applied Materials &<br>Interfaces, 2017, 9, 10921-10928.                                                                                       | 8.0  | 49        |
| 7  | A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory. Nanoscale, 2015, 7, 17306-17311.                                                                           | 5.6  | 46        |
| 8  | Self-Powered Rewritable Electrochromic Display based on WO <sub>3-x</sub> Film with<br>Mechanochemically Synthesized MoO <sub>3–<i>y</i></sub> Nanosheets. ACS Applied Materials &<br>Interfaces, 2021, 13, 20326-20335. | 8.0  | 46        |
| 9  | Self-Powered Ultrabroadband Photodetector Monolithically Integrated on a PMN–PT Ferroelectric<br>Single Crystal. ACS Applied Materials & Interfaces, 2016, 8, 32934-32939.                                               | 8.0  | 45        |
| 10 | Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence.<br>Nano Energy, 2016, 20, 48-56.                                                                                      | 16.0 | 43        |
| 11 | High-performance stretchable photodetector based on<br>CH <sub>3</sub> NH <sub>3</sub> Pbl <sub>3</sub> microwires and graphene. Nanoscale, 2018, 10,<br>10538-10544.                                                    | 5.6  | 41        |
| 12 | Boosting Transport Kinetics of lons and Electrons Simultaneously by Ti3C2Tx (MXene) Addition for Enhanced Electrochromic Performance. Nano-Micro Letters, 2021, 13, 20.                                                  | 27.0 | 37        |
| 13 | A multifunctional smart window: detecting ultraviolet radiation and regulating the spectrum automatically. Journal of Materials Chemistry C, 2019, 7, 10446-10453.                                                       | 5.5  | 32        |
| 14 | Anodic aluminum oxide–epoxy composite acoustic matching layers for ultrasonic transducer application. Ultrasonics, 2016, 70, 29-33.                                                                                      | 3.9  | 31        |
| 15 | Hexagonal Crown-Capped Zinc Oxide Micro Rods: Hydrothermal Growth and Formation Mechanism.<br>Inorganic Chemistry, 2013, 52, 10167-10175.                                                                                | 4.0  | 30        |
| 16 | CsCu <sub>5</sub> Se <sub>3</sub> : A Copper-Rich Ternary Chalcogenide Semiconductor with Nearly<br>Direct Band Gap for Photovoltaic Application. Chemistry of Materials, 2018, 30, 1121-1126.                           | 6.7  | 30        |
| 17 | A high-performance transparent photodetector via building hierarchical g-C3N4 nanosheets/CNTs van der Waals heterojunctions by a facile and scalable approach. Applied Surface Science, 2020, 529, 147122.               | 6.1  | 29        |
| 18 | Self-doped tungsten oxide films induced by <i>in situ</i> carbothermal reduction for high performance electrochromic devices. Journal of Materials Chemistry C, 2020, 8, 13999-14006.                                    | 5.5  | 26        |

Huajing Fang

| #  | Article                                                                                                                                                                                                         | IF                | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 19 | Fabrication of volcano-shaped nano-patterned sapphire substrates using colloidal self-assembly and wet chemical etching. Nanotechnology, 2013, 24, 335301.                                                      | 2.6               | 24           |
| 20 | Surface modification of KBaBP2O8:Eu3+ phosphors by Al-doped ZnO coating. Materials Letters, 2013, 100, 216-218.                                                                                                 | 2.6               | 19           |
| 21 | Infrared light gated MoS_2 field effect transistor. Optics Express, 2015, 23, 31908.                                                                                                                            | 3.4               | 18           |
| 22 | A self-powered photoelectrochemical ultraviolet photodetector based on<br>Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /TiO <sub>2</sub> in situ formed heterojunctions.<br>Nanotechnology, 2022, 33, 075502.  | 2.6               | 18           |
| 23 | Piezoelectric Property of a Tetragonal (Ba,Ca)(Zr,Ti)O <sub>3</sub> Single Crystal and Its Fine-Domain<br>Structure. ACS Applied Materials & Interfaces, 2018, 10, 12847-12853.                                 | 8.0               | 15           |
| 24 | Electrochromic devices constructed with water-in-salt electrolyte enabling energy-saving and prolonged optical memory effect. Chemical Engineering Journal, 2022, 446, 137122.                                  | 12.7              | 15           |
| 25 | A highly transparent humidity sensor with fast response speed based on α-MoO <sub>3</sub> thin films.<br>RSC Advances, 2020, 10, 25467-25474.                                                                   | 3.6               | 12           |
| 26 | Nanosecond-Response Speed Sensor Based on Perovskite Single Crystal Photodetector Array. ACS Photonics, 2018, 5, 3172-3178.                                                                                     | 6.6               | 11           |
| 27 | Dual-function biomimetic eyes based on thermally-stable organohydrogel electrolyte. Chemical<br>Engineering Journal, 2022, 438, 135383.                                                                         | 12.7              | 7            |
| 28 | Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory. Journal of Applied Physics, 2016, 119, 014104.                                | 2.5               | 5            |
| 29 | Monolithic integrated multifunctional photoelectrochemical device for smart ultraviolet management. Materials Today Energy, 2021, 20, 100676.                                                                   | 4.7               | 5            |
| 30 | Effects of pre-polarization on the dielectric and piezoelectric properties of 0–3 type<br>PIN–PMN–PT/PVDF composites. Journal of Materials Science: Materials in Electronics, 2015, 26,<br>6427-6433.           | 2.2               | 4            |
| 31 | Enhanced permittivity and permeability of (1-y)(Mg0.95Zn0.05)2TiO4-yMg0.95Zn0.05Fe2O4 ceramics.<br>Journal of the European Ceramic Society, 2018, 38, 5367-5374.                                                | 5.7               | 4            |
| 32 | Transparent humidity sensor with high sensitivity via a facile and scalable way based on liquid-phase exfoliated MoO3- nanosheets. Sensors and Actuators Reports, 2022, 4, 100092.                              | 4.4               | 2            |
| 33 | Transparent Electronics: Solutionâ€Processed Selfâ€Powered Transparent Ultraviolet Photodetectors<br>with Ultrafast Response Speed for Highâ€Performance Communication System (Adv. Funct. Mater.) Tj ETQq1 1 ( | ).7 <b>849</b> 14 | rg&T /Overlo |
| 34 | Thickness-dependent magnetic anisotropy in laminated Co1.1Fe1.9O4 ceramics. Ceramics International, 2019, 45, 23734-23739.                                                                                      | 4.8               | 0            |
| 35 | An Optothermal Field Effect Transistor Based on PMN-26PT Single Crystal. Springer Theses, 2020, , 29-48.                                                                                                        | 0.1               | 0            |
| 36 | An Ultrabroadband Photodetector Based on PMN-28PT Single Crystal. Springer Theses, 2020, , 49-73.                                                                                                               | 0.1               | 0            |

| #  | Article                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Mechanical Energy Writeable Ferroelectric Memory Based on PMN-35PT Single Crystal. Springer<br>Theses, 2020, , 75-101. | 0.1 | 0         |