Ali Chehab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3324216/publications.pdf

Version: 2024-02-01

255 papers

3,589 citations

³⁶¹³⁸⁸
20
h-index

254170 43 g-index

257 all docs

257 docs citations

257 times ranked

2966 citing authors

#	Article	IF	Citations
1	A machine learning based framework for IoT device identification and abnormal traffic detection. Transactions on Emerging Telecommunications Technologies, 2022, 33, e3743.	3.9	69
2	Novel one round message authentication scheme for constrained IoT devices. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 483-499.	4.9	5
3	Robotics cyber security: vulnerabilities, attacks, countermeasures, and recommendations. International Journal of Information Security, 2022, 21, 115-158.	3.4	72
4	LoRCA: Lightweight round block and stream cipher algorithms for IoV systems. Vehicular Communications, 2022, 34, 100416.	4.0	5
5	An efficient and secure cipher scheme for MIMO–OFDM systems based on physical layer security. Telecommunication Systems, 2022, 79, 17-32.	2.5	1
6	Towards efficient real-time traffic classifier: A confidence measure with ensemble Deep Learning. Computer Networks, 2022, 204, 108684.	5.1	1
7	Group LARS based Iterative Reweighted Least Squares Methodology for Efficient Statistical Modeling of Memory Designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, , 1-1.	2.7	O
8	A Single-Pass and One-Round Message Authentication Encryption for Limited IoT Devices. IEEE Internet of Things Journal, 2022, 9, 17885-17900.	8.7	4
9	Network coding and MPTCP: Enhancing security and performance in an SDN environment. Journal of Information Security and Applications, 2022, 66, 103165.	2.5	0
10	Efficient and secure selective cipher scheme for MIoT compressed images. Ad Hoc Networks, 2022, 135, 102928.	5 . 5	0
11	TRESC: Towards redesigning existing symmetric ciphers. Microprocessors and Microsystems, 2021, 87, 103478.	2.8	3
12	Physical layer security for NOMA: limitations, issues, and recommendations. Annales Des Telecommunications/Annals of Telecommunications, 2021, 76, 375-397.	2.5	13
13	Efficient and robust data availability solution for hybrid PLC/RF systems. Computer Networks, 2021, 185, 107675.	5.1	13
14	Secure MIMO D2D communication based on a lightweight and robust PLS cipher scheme. Wireless Networks, 2021, 27, 557-574.	3.0	4
15	Security of Power Line Communication systems: Issues, limitations and existing solutions. Computer Science Review, 2021, 39, 100331.	15.3	20
16	Message authentication algorithm for OFDM communication systems. Telecommunication Systems, 2021, 76, 403-422.	2.5	3
17	Data representation for CNN based internet traffic classification: a comparative study. Multimedia Tools and Applications, 2021, 80, 16951-16977.	3.9	10
18	Efficient data confidentiality scheme for 5G wireless NOMA communications. Journal of Information Security and Applications, 2021, 58, 102781.	2.5	8

#	Article	IF	Citations
19	OPriv: Optimizing Privacy Protection for Network Traffic. Journal of Sensor and Actuator Networks, 2021, 10, 38.	3.9	1
20	Optimal Packet Camouflage Against Traffic Analysis. ACM Transactions on Privacy and Security, 2021, 24, 1-23.	3.0	8
21	An Artificial Intelligence Resiliency System (ARS). Studies in Computational Intelligence, 2021, , 617-650.	0.9	0
22	Physical layer security schemes for MIMO systems: an overview. Wireless Networks, 2020, 26, 2089-2111.	3.0	13
23	Software-Defined Networking (SDN): the security review. Journal of Cyber Security Technology, 2020, 4, 1-66.	2.9	19
24	Performance analysis of SDN vs OSPF in diverse network environments. Concurrency Computation Practice and Experience, 2020, 32, e5410.	2.2	1
25	Securing internet of medical things systems: Limitations, issues and recommendations. Future Generation Computer Systems, 2020, 105, 581-606.	7.5	144
26	DistLog: A distributed logging scheme for IoT forensics. Ad Hoc Networks, 2020, 98, 102061.	5.5	32
27	Lightweight multi-factor mutual authentication protocol for IoT devices. International Journal of Information Security, 2020, 19, 679-694.	3.4	42
28	LoRaWAN security survey: Issues, threats and possible mitigation techniques. Internet of Things (Netherlands), 2020, 12, 100303.	7.7	64
29	Efficient & Efficient amp; secure image availability and content protection. Multimedia Tools and Applications, 2020, 79, 22869-22904.	3.9	4
30	Efficient and secure multi-homed systems based on binary random linear network coding. Computers and Electrical Engineering, 2020, 87, 106774.	4.8	0
31	Physical Layer Anti-jamming Technique Using Massive Planar Antenna Arrays. , 2020, , .		4
32	Network Obfuscation for Net Worth Security. , 2020, , .		2
33	Efficient and Secure Keyed Hash Function Scheme Based on RC4 Stream Cipher. , 2020, , .		2
34	Security analysis of drones systems: Attacks, limitations, and recommendations. Internet of Things (Netherlands), 2020, 11, 100218.	7.7	304
35	Lightweight and secure cipher scheme for multi-homed systems. Wireless Networks, 2020, , $1.$	3.0	2
36	Overview of Efficient Symmetric Cryptography: Dynamic vs Static Approaches., 2020,,.		5

#	Article	IF	Citations
37	Overview of Digital Forensics and Anti-Forensics Techniques. , 2020, , .		10
38	ESSENCE: GPU-based and dynamic key-dependent efficient stream cipher for multimedia contents. Multimedia Tools and Applications, 2020, 79, 13559-13579.	3.9	2
39	Cyber-physical systems security: Limitations, issues and future trends. Microprocessors and Microsystems, 2020, 77, 103201.	2.8	215
40	A review on machine learning–based approaches for Internet traffic classification. Annales Des Telecommunications/Annals of Telecommunications, 2020, 75, 673-710.	2.5	55
41	Denoising Adversarial Autoencoder for Obfuscated Traffic Detection and Recovery. Lecture Notes in Computer Science, 2020, , 99-116.	1.3	4
42	Efficient and Secure Cipher Scheme for Limited IoT Devices. , 2020, , .		0
43	Efficient and Secure Statistical DDoS Detection Scheme. , 2020, , .		1
44	Towards Securing LoRaWAN ABP Communication System. , 2020, , .		4
45	A Lightweight Reconfigurable RRAM-based PUF for Highly Secure Applications. , 2020, , .		4
46	An Efficient OFDM-Based Encryption Scheme Using a Dynamic Key Approach. IEEE Internet of Things Journal, 2019, 6, 361-378.	8.7	47
47	Secure mHealth IoT Data Transfer from the Patient to the Hospital: A Three-Tier Approach. IEEE Wireless Communications, 2019, 26, 70-76.	9.0	13
48	Machine Learning for Network Resiliency and Consistency. , 2019, , .		4
49	Enhancing Multipath TCP Security Through Software Defined Networking. , 2019, , .		2
50	Preserving data security in distributed fog computing. Ad Hoc Networks, 2019, 94, 101937.	5.5	44
51	Massive Planar Antenna Arrays for Physical Layer Security. , 2019, , .		1
52	Lightweight and Secure D2D Authentication & Samp; Key Management Based on PLS., 2019,,.		7
53	CAMEM: A Computationally-Efficient and Accurate Memristive Model With Experimental Verification. IEEE Nanotechnology Magazine, 2019, 18, 1040-1049.	2.0	5
54	Efficient & Description of the Efficient &	3.2	19

#	Article	IF	CITATIONS
55	Joint Security and Energy Efficiency in IoT Networks Through Clustering and Bit Flipping. , 2019, , .		6
56	Efficient Chaotic Encryption Scheme with OFB Mode. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950059.	1.7	9
57	Design and realization of efficient & Design and Realization of effici	5.1	6
58	AdaptiveMutate: a technique for privacy preservation. Digital Communications and Networks, 2019, 5, 245-255.	5.0	4
59	Mobile Traffic Anonymization Through Probabilistic Distribution. , 2019, , .		6
60	3D Beamforming With Massive Cylindrical Arrays for Physical Layer Secure Data Transmission. IEEE Communications Letters, 2019, 23, 830-833.	4.1	6
61	Efficient & Effici		4
62	Lightweight Stream Cipher Scheme for Resource-Constrained IoT Devices. , 2019, , .		20
63	Secure and Lightweight Mutual Multi-Factor Authentication for IoT Communication Systems. , 2019, , .		11
64	Lightweight, dynamic and efficient image encryption scheme. Multimedia Tools and Applications, 2019, 78, 16527-16561.	3.9	19
65	A survey on OFDM physical layer security. Physical Communication, 2019, 32, 1-30.	2.1	54
66	Efficient and secure cipher scheme for multimedia contents. Multimedia Tools and Applications, 2019, 78, 14837-14866.	3.9	17
67	A Physical Encryption Scheme for Low-Power Wireless M2M Devices: a Dynamic Key Approach. Mobile Networks and Applications, 2019, 24, 447-463.	3.3	7
68	Wireless Body Sensor Networks., 2019,, 731-763.		4
69	Large MIMO Detection Schemes Based on Channel Puncturing: Performance and Complexity Analysis. IEEE Transactions on Communications, 2018, 66, 2421-2436.	7.8	15
70	Power-aware workload allocation for green data centers. Management of Environmental Quality, 2018, 29, 678-703.	4.3	0
71	Power Control and Channel Allocation for D2D Underlaid Cellular Networks. IEEE Transactions on Communications, 2018, 66, 3217-3234.	7.8	40
72	One round cipher algorithm for multimedia IoT devices. Multimedia Tools and Applications, 2018, 77, 18383-18413.	3.9	81

#	Article	IF	CITATIONS
73	A Network Management Framework for SDN. , 2018, , .		8
74	Identity Based Key Distribution Framework for Link Layer Security of AMI Networks. IEEE Transactions on Smart Grid, 2018, 9, 3166-3179.	9.0	9
75	High Order Multi-User MIMO Subspace Detection. Journal of Signal Processing Systems, 2018, 90, 305-321.	2.1	7
76	Mobile Apps identification based on network flows. Knowledge and Information Systems, 2018, 55, 771-796.	3.2	14
77	A new efficient lightweight and secure image cipher scheme. Multimedia Tools and Applications, 2018, 77, 15457-15484.	3.9	26
78	Adaptive Optimization for Hybrid Network Control Planes. , 2018, , .		1
79	Towards a Machine Learning Approach for Detecting Click Fraud in Mobile Advertizing. , 2018, , .		21
80	A Multi-level Internet Traffic Classifier Using Deep Learning. , 2018, , .		17
81	Efficient and Secure Physical Encryption Scheme for Low-Power Wireless M2M Devices. , 2018, , .		11
82	A lightweight write-assist scheme for reduced RRAM variability and power. Microelectronics Reliability, 2018, 88-90, 6-10.	1.7	6
83	When Quantized Massive MIMO Meets Large MIMO With Higher Order Modulation. IEEE Communications Letters, 2018, 22, 2599-2602.	4.1	1
84	Memristor models optimization for large-scale 1T1R memory arrays., 2018,,.		2
85	Network Programming and Probabilistic Sketching for Securing the Data Plane. Security and Communication Networks, 2018, 2018, 1-23.	1.5	2
86	App traffic mutation: Toward defending against mobile statistical traffic analysis. , 2018, , .		8
87	loT survey: An SDN and fog computing perspective. Computer Networks, 2018, 143, 221-246.	5.1	150
88	Channel-Punctured Large MIMO Detection. , 2018, , .		4
89	S-DES: An efficient & secure DES variant. , 2018, , .		5
90	Machine learning for network resilience: The start of a journey. , 2018, , .		8

#	Article	IF	Citations
91	Pushing intelligence to the network edge. , 2018, , .		6
92	Network convergence in SDN versus OSPF networks. , 2018, , .		6
93	A dynamic approach for a lightweight and secure cipher for medical images. Multimedia Tools and Applications, 2018, 77, 31397-31426.	3.9	17
94	A fairness-based congestion control algorithm for multipath TCP. , 2018, , .		6
95	Joint channel allocation and power control for D2D communications using stochastic geometry. , 2018, , .		4
96	Double error cellular automata-based error correction with skip-mode compact syndrome coding for resilient PUF design. , 2018 , , .		0
97	Regularized logistic regression for fast importance sampling based SRAM yield analysis. , 2017, , .		2
98	Multi-level security for the 5G/IoT ubiquitous network. , 2017, , .		6
99	Oxide-based RRAM models for circuit designers: A comparative analysis. , 2017, , .		17
100	Software Defined IoT security framework. , 2017, , .		13
101	SDN VANETs in 5G: An architecture for resilient security services. , 2017, , .		39
102	Fuzzy decision system for technology choice in hybrid networks. , 2017, , .		1
103	Flow-based Intrusion Detection System for SDN. , 2017, , .		42
104	Virtualized network views for localizing misbehaving sources in SDN data planes. , 2017, , .		4
105	SDN for MPTCP: An enhanced architecture for large data transfers in datacenters. , 2017, , .		12
106	Low-power and high-speed shift-based multiplier for error tolerant applications. Microprocessors and Microsystems, 2017, 52, 566-574.	2.8	3
107	A privacy-enhanced computationally-efficient and comprehensive LTE-AKA. Computer Communications, 2017, 98, 20-30.	5.1	18
108	Modulation Classification via Subspace Detection in MIMO Systems. IEEE Communications Letters, 2017, 21, 64-67.	4.1	10

#	Article	IF	CITATIONS
109	A Multi-Gbps Fully Pipelined Layered Decoder for IEEE 802.11n/ac/ax LDPC Codes. , 2017, , .		4
110	QoS guarantee over hybrid SDN/non-SDN networks. , 2017, , .		5
111	Hard-output chase detectors for large MIMO: BER performance and complexity analysis. , 2017, , .		3
112	A Distance-Based Power Control Scheme for D2D Communications Using Stochastic Geometry. , 2017, , .		21
113	Interlaced Column-Row Message-Passing Schedule for Decoding LDPC Codes. , 2016, , .		5
114	A virtual QoS-adaptive network connectivity service: An SDN approach. , 2016, , .		2
115	Analysis of topology based routing protocols for VANETs in different environments. , 2016, , .		12
116	Load balancing in LTE core networks using SDN. , 2016, , .		8
117	A game-theoretic approach to resource allocation in the cloud. , 2016, , .		3
118	Securing Diameter: Comparing TLS, DTLS, and IPSec. , 2016, , .		3
119	Proactive channel allocation for multimedia applications over CSMA/CA-based CRNs., 2016,,.		1
120	SDN verification plane for consistency establishment. , 2016, , .		6
121	NCaaS., 2016, , .		0
122	SDN Security Plane: An Architecture for Resilient Security Services. , 2016, , .		24
123	Low-complexity joint modulation classification and detection in MU-MIMO. , 2016, , .		2
124	Efficient near optimal joint modulation classification and detection for MU-MIMO systems. , 2016, , .		9
125	Efficient near-optimal $8 ilde{A}$ -8 MIMO detector. , 2016 , , .		3
126	Identity-based authentication scheme for the Internet of Things. , 2016, , .		73

#	Article	IF	CITATIONS
127	A crowdsourcing game-theoretic intrusion detection and rating system. , 2016, , .		2
128	Efficient subspace detection for high-order MIMO systems. , 2016, , .		5
129	VNCS: Virtual Network Connectivity as a Service a Software-Defined Networking Approach. , 2016, , .		1
130	Playing with Sybil. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on Applied Computing, 2016, 16, 16-25.	0.9	4
131	A low power reconfigurable LFSR. , 2016, , .		13
132	SDN controllers: A comparative study. , 2016, , .		93
133	Solving sybil attacks using evolutionary game theory. , 2016, , .		5
134	Likelihood-based modulation classification for MU-MIMO systems. , 2015, , .		6
135	An architecture for the Internet of Things with decentralized data and centralized control. , 2015, , .		19
136	Messaging Attacks on Android: Vulnerabilities and Intrusion Detection. Mobile Information Systems, 2015, 2015, 1-13.	0.6	6
137	Low-complexity MIMO detector with 1024-QAM., 2015,,.		7
138	Partial mobile application offloading to the cloud for energy-efficiency with security measures. Sustainable Computing: Informatics and Systems, 2015, 8, 38-46.	2.2	17
139	Comparison of in-app ads traffic in different ad networks. , 2015, , .		0
140	Edge computing enabling the Internet of Things. , 2015, , .		112
141	CENTERA: A Centralized Trust-Based Efficient Routing Protocol with Authentication for Wireless Sensor Networks. Sensors, 2015, 15, 3299-3333.	3.8	32
142	G-Route: an energy-aware service routing protocol for green cloud computing. Cluster Computing, 2015, 18, 889-908.	5.0	12
143	Efficient Healthcare Integrity Assurance in the Cloud with Incremental Cryptography and Trusted Computing., 2015,, 845-857.		1
144	PUF and ID-based key distribution security framework for advanced metering infrastructures. , 2014, , .		11

#	Article	IF	CITATIONS
145	3G to Wi-Fi offloading on Android. , 2014, , .		1
146	DAGGER: Distributed architecture for granular mitigation of mobile based attacks. , 2014, , .		0
147	Mobile malware exposed. , 2014, , .		1
148	CAVE: Hybrid Approach for In-Network Content Caching. , 2014, , .		0
149	Smartphone sensors as random bit generators. , 2014, , .		6
150	CrowdApp: Crowdsourcing for application rating. , 2014, , .		3
151	ServBGP: BGP-inspired autonomic service routing for multi-provider collaborative architectures in the cloud. Future Generation Computer Systems, 2014, 32, 99-117.	7.5	8
152	Statistical methodology for modeling non-IID memory fails events. , 2014, , .		2
153	Application-Aware Fast Dormancy in LTE. , 2014, , .		0
154	Energy analysis of HEVC compression with stochastic processing. , 2014, , .		2
155	Robust bias temperature instability refresh design and methodology for memory cell recovery. , 2014, , .		1
156	DAIDS: An Architecture for Modular Mobile IDS. , 2014, , .		5
157	Profiling of HEVC encoder. Electronics Letters, 2014, 50, 1061-1063.	1.0	13
158	SCADA Intrusion Detection System based on temporal behavior of frequent patterns. , 2014, , .		30
159	"Server-less―Social Network for Enhanced Privacy. Procedia Computer Science, 2014, 34, 95-102.	2.0	1
160	Authentication schemes for wireless sensor networks., 2014,,.		8
161	IP Spoofing Detection Using Modified Hop Count. , 2014, , .		26
162	Fast dynamic internet mapping. Future Generation Computer Systems, 2014, 39, 55-66.	7.5	10

#	Article	IF	CITATIONS
163	Decentralised malicious node detection in WSN. International Journal of Space-Based and Situated Computing, 2014, 4, 15.	0.2	9
164	Effects of Signaling Attacks on LTE Networks. , 2013, , .		19
165	Malicious Node Detection in Wireless Sensor Networks. , 2013, , .		6
166	Internal security attacks on SCADA systems. , 2013, , .		22
167	Android SMS Malware: Vulnerability and Mitigation. , 2013, , .		18
168	SNUAGE: an efficient platform-as-a-service security framework for the cloud. Cluster Computing, 2013, 16, 707-724.	5.0	6
169	Energy-efficient truncated multipliers. , 2013, , .		2
170	Low overhead anonymous routing. , 2013, , .		0
171	Energy-efficient truncated multipliers with scaling. , 2013, , .		1
172	A resource reservation attack against LTE networks. , 2013, , .		5
173	Privacy Enhanced and Computationally Efficient HSK-AKA LTE Scheme. , 2013, , .		20
174	Energy efficiency in Mobile Cloud Computing: Total offloading selectively works. Does selective offloading totally work?. , 2013, , .		9
175	Energy-efficient HEVC using stochastic processing. , 2013, , .		1
176	TABSH: Tag-based stochastic hardware., 2013,,.		0
177	W-AKA: Privacy-enhanced LTE-AKA using secured channel over Wi-Fi. , 2013, , .		4
178	Evaluation of Low-Power Computing when Operating on Subsets of Multicore Processors. Journal of Signal Processing Systems, 2013, 70, 193-208.	2.1	5
179	Perception-aware packet-loss resilient compression for networked haptic systems. Computer Communications, 2013, 36, 1621-1628.	5.1	3
180	Effects of workload variation on the energy distribution in a mobile platform. Microprocessors and Microsystems, 2013, 37, 1192-1199.	2.8	0

#	Article	IF	CITATIONS
181	Low-power digital signal processor design for a hearing aid. , 2013, , .		3
182	Accountable energy monitoring for green service routing in the cloud., 2013,,.		2
183	User experience-based mechanism for preserving energy in graphics-intensive applications. , 2013, , .		2
184	Hardware-Based Security for Ensuring Data Privacy in the Cloud. , 2013, , 147-170.		1
185	Signaling oriented denial of service on LTE networks. , 2012, , .		23
186	BGP-inspired autonomic service routing for the cloud. , 2012, , .		4
187	Security analysis and solution for thwarting cache poisoning attacks in the Domain Name System. , 2012, , .		9
188	Energy efficient JPEG using stochastic processing. , 2012, , .		4
189	CENTER: A Centralized Trust-Based Efficient Routing protocol for wireless sensor networks. , 2012, , .		10
190	Stochastic hardware architectures: A survey. , 2012, , .		3
191	A novel technique to measure data retention voltage of large SRAM arrays. , 2011, , .		3
192	Low-power adder design techniques for noise-tolerant applications. , 2011, , .		2
193	Assessing testing techniques for resistive-open defects in nanometer CMOS adders. , 2011, , .		0
194	H-TRACE: A hybrid energy-aware routing scheme for mobile ad hoc networks. , 2011, , .		0
195	The effectiveness of delay and IDDT tests in detecting resistive open defects for nanometer CMOS adder circuits. , $2011, \ldots$		4
196	A low-power methodology for configurable wide kogge-stone adders. , 2011, , .		4
197	CloudESE: Energy efficiency model for cloud computing environments., 2011,,.		21
198	E2VoIP2: Energy efficient voice over IP privacy. Computers and Security, 2011, 30, 815-829.	6.0	0

#	Article	lF	CITATIONS
199	Fuzzy reputation-based trust model. Applied Soft Computing Journal, 2011, 11, 345-355.	7.2	34
200	Energy consumption breakdown of a modern mobile platform under various workloads., 2011,,.		3
201	TRACE: A centralized Trust And Competence-based Energy-efficient routing scheme for wireless sensor networks., 2011,,.		7
202	A design methodology for energy aware neural networks. , 2011, , .		3
203	Energy-efficient platform-as-a-service security provisioning in the cloud. , 2011, , .		2
204	SinPack: A Security Protocol for Preventing Pollution Attacks in Network-Coded Content Distribution Networks. , 2010, , .		3
205	CATRAC: Context-Aware Trust- and Role-Based Access Control for Composite Web Services. , 2010, , .		6
206	Energy minimization feedback loop for ripple carry adders. , 2010, , .		3
207	A Privacy-Preserving Trust Model for VANETs. , 2010, , .		35
208	Energy-efficient incremental integrity for securing storage in mobile cloud computing. , 2010, , .		55
209	Testing techniques for resistive-open defects in future CMOS technologies. , 2010, , .		2
210	1.5 GHz robust SRAM array employing dynamic power management scheme. , 2010, , .		0
211	Transient current and delay analysis for resistive-open defects in future 16 nm CMOS circuits. , 2010, , .		1
212	A centralized energy-aware trust-based routing scheme for wireless sensor networks. , 2010, , .		2
213	A 1.5 GHz robust SRAM array optimized for cell area. , 2010, , .		0
214	Smart encryption channels for securing virtual machineâ€based networked applications. Security and Communication Networks, 2009, 2, 507-518.	1.5	1
215	Wavelet transform-based transient current analysis for detection of gate-oxide shorts in CMOS. , 2009, , .		2
216	Wireless Sensor for Continuous Real-Time Oil Spill Thickness and Location Measurement. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 4001-4011.	4.7	40

#	Article	IF	Citations
217	Privacy as a Service: Privacy-Aware Data Storage and Processing in Cloud Computing Architectures., 2009,,.		196
218	Mutual Authentication Scheme for EPC Tags-Readers in the Supply Chain. , 2009, , .		0
219	The design and implementation of an ad hoc network of mobile devices using the LIME II tuple-space framework. IEEE Wireless Communications, 2009, 16, 52-59.	9.0	2
220	Dynamic current testing for CMOS domino circuits. International Journal of Electronics, 2008, 95, 577-592.	1.4	2
221	Wireless sensor node for real-time thickness measurement and localization of oil spills., 2008,,.		7
222	RFID security protocols. , 2008, , .		3
223	Host protection in grid computing. , 2008, , .		О
224	Trust-privacy tradeoffs in distributed systems. , 2008, , .		5
225	PATROL: a comprehensive reputation-based trust model. International Journal of Internet Technology and Secured Transactions, 2007, 1, 108.	0.4	20
226	XPRIDE: Policy-Driven Web Services Security Based on XML Content., 2007,,.		0
227	SmartSSL: Efficient Policy-Based Web Security. , 2007, , .		O
228	Transient Current Testing of Gate-Oxide Shorts in CMOS., 2007,,.		9
229	Empirical Formulation and Design of a Broadband Enhanced E-Patch Antenna. , 2007, , .		6
230	An efficient and scalable Security ProtocoL for protecting fixed-Content Objects in ContEnt aDdressable StoraGe architEctures., 2007,,.		0
231	Intercell Interference Reduction by the Use of Chebyshev Circular Antenna Arrays with Beam Steering. , 2007, , .		3
232	Personalized Web Page Ranking Using Trust and Similarity. , 2007, , .		7
233	An improved broadband E patch microstrip antenna for wireless communications. Radio Science, 2007, 42, .	1.6	6
234	SECERN: A Secure Enterprise Backup and Recovery System for Mission-Critical Relational Database Servers., 2006,,.		1

#	Article	IF	Citations
235	ODYSSEY: Policy-Driven Anonymizer for Handheld Wireless Devices Privacy. , 2006, , .		0
236	Reputation-Based Algorithm for Managing Trust in File Sharing Networks. , 2006, , .		6
237	Cylindrical Antenna Arrays for WCDMA Downlink Capacity Enhancement., 2006,,.		7
238	Scaling of iDDT Test Methods for Random Logic Circuits. Journal of Electronic Testing: Theory and Applications (JETTA), 2006, 22, 11-22.	1.2	1
239	An enterprise policy-based security protocol for protecting relational database network objects. , 2006, , .		3
240	Dynamic Current Testing for CMOS Domino Circuits. Midwest Symposium on Circuits and Systems, 2006, , .	1.0	0
241	NISp1-09: PRIDE: Policy-Driven Web Security for Handheld Wireless Devices. IEEE Global Telecommunications Conference (GLOBECOM), 2006, , .	0.0	3
242	PATROL-F – A Comprehensive Reputation-Based Trust Model with Fuzzy Subsystems. Lecture Notes in Computer Science, 2006, , 205-216.	1.3	20
243	Network Setup for Secure Routing in Inter-Vehicle Communication Networks. International Journal of Business Data Communications and Networking, 2006, 2, 1-17.	0.7	0
244	8085 microprocessor simulation tool ?8085 SimuKit?. Computer Applications in Engineering Education, 2004, 12, 249-256.	3.4	4
245	i/sub DDT/ test methodologies for very deep sub-micron CMOS circuits. , 0, , .		17
246	An improved method for i/sub DDT/ testing in the presence of leakage and process variation. , 0, , .		4
247	Transient current testing of dynamic CMOS circuits in the presence of leakage and process variation. , 0 , , .		2
248	Trummar - a trust model for mobile agent systems based on reputation. , 0, , .		11
249	Transient current testing of dynamic CMOS circuits. , 0, , .		3
250	Short Paper: PATRIOT- a Policy-Based, Multi-level Security Protocol for Safekeeping Audit Logs on Wireless Devices. , 0, , .		2
251	Evaluation of I/sub DDT? testing for CMOS domino circuits. , 0, , .		4
252	A comprehensive reputation-based trust model for distributed systems. , 0, , .		14

ALI CHEHAB

#	Article	IF	CITATIONS
253	Efficient and secure message authentication algorithm at the physical layer. Wireless Networks, 0, , $1.$	3.0	4
254	Security and Privacy in Body Sensor Networks. Advances in Healthcare Information Systems and Administration Book Series, 0 , $100-127$.	0.2	0
255	Mutated traffic detection and recovery: an adversarial generative deep learning approach. Annales Des Telecommunications/Annals of Telecommunications, 0, , 1.	2.5	3