Iosif Gofman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3324208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anisotropic swelling and mechanical behavior of composite bacterial cellulose–poly(acrylamide or) Tj ETQq1 1 2010, 3, 102-111.	0.784314 1.5	rgBT /Overic 87
2	Thermal properties of bulk polyimides: insights from computer modeling versus experiment. Soft Matter, 2014, 10, 1224.	1.2	68
3	Electrospun Bilayer Chitosan/Hyaluronan Material and Its Compatibility with Mesenchymal Stem Cells. Materials, 2019, 12, 2016.	1.3	41
4	Parameterization of electrostatic interactions for molecular dynamics simulations of heterocyclic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 912-923.	2.4	36
5	Correlation between the High-Temperature Local Mobility of Heterocyclic Polyimides and Their Mechanical Properties. Macromolecules, 2016, 49, 6700-6710.	2.2	32
6	Effect of single-walled carbon nanotubes and carbon nanofibers on the structure and mechanical properties of thermoplastic polyimide matrix films. Polymer Science - Series A, 2013, 55, 268-278.	0.4	31
7	High-strength biocompatible hydrogels based on poly(acrylamide) and cellulose: Synthesis, mechanical properties and perspectives for use as artificial cartilage. Polymer Science - Series A, 2013, 55, 302-312.	0.4	25
8	The effect of different orientations in rigid rod polyimide films on the graphitized products. Carbon, 2007, 45, 839-846.	5.4	23
9	Polyimide Ultrafiltration Membranes with High Thermal Stability and Chemical Durability. Separation Science and Technology, 2009, 44, 3814-3831.	1.3	21
10	Modification of films of heat-resistant polyimides by adding hydrosilicate and carbon nanoparticles of various geometries. Russian Journal of General Chemistry, 2007, 77, 1158-1163.	0.3	20
11	Chemical modification of nanocrystalline cellulose for improved interfacial compatibility with poly(lactic acid). Mendeleev Communications, 2019, 29, 220-222.	0.6	20
12	New polyamides with main-chain cyanine chromophores. Polymer Science - Series A, 2011, 53, 457-468.	0.4	18
13	Polymeric composite systems modified with allotropic forms of carbon (review). Russian Journal of Applied Chemistry, 2011, 84, 735-750.	0.1	17
14	Specific features of creep and tribological behavior of polyimide-carbon nanotubes nanocomposite films: effect of the nanotubes functionalization. Journal of Polymer Research, 2013, 20, 1.	1.2	17
15	Composites of multiblock (segmented) aliphatic poly(ester imide) with zirconia nanoparticles: Synthesis, mechanical properties, and pervaporation behavior. Polymer Science - Series B, 2014, 56, 919-926.	0.3	17
16	Initial stage of stress relaxation in oriented polymers. Physics of the Solid State, 2016, 58, 840-846.	0.2	17
17	Cellulose cryogels prepared by regeneration from phosphoric acid solutions. Cellulose, 2021, 28, 4975-4989.	2.4	17
18	New silicone hydrogels based on interpenetrating polymer networks comprising polysiloxane and poly(vinyl alcohol) networks. Polymers for Advanced Technologies, 2009, 20, 367-377.	1.6	16

#	Article	IF	CITATIONS
19	Relationship between the Morphology, Nanostructure, and Strength Properties of Aquivion® Type Perfluorinated Proton-Conducting Membranes Prepared by Casting from Solution. Russian Journal of Applied Chemistry, 2018, 91, 101-104.	0.1	16
20	Nanocomposite based on polyamidoimide with hydrosilicate nanoparticles of varied morphology. Russian Journal of Applied Chemistry, 2007, 80, 2142-2148.	0.1	15
21	Characteristics of composite films based on methyl cellulose and poly(N-vinylformamide) prepared from solutions in water and dimethyl sulfoxide. Polymer Science - Series A, 2011, 53, 409-417.	0.4	15
22	Novel Polyheteroarylene Membranes for Separation of Methanol‒Hexane Mixture by Pervaporation. Scientific Reports, 2018, 8, 17849.	1.6	15
23	Specific features of chitosan-montmorillonite interaction in an aqueous acid solution and properties of related composite films. Polymer Science - Series A, 2012, 54, 224-230.	0.4	14
24	Influence of the Degree of Crystallinity on the Mechanical and Tribological Properties of High-Performance Thermoplastics Over a Wide Range of Temperatures: From Room Temperature up to 250°C. Journal of Macromolecular Science - Physics, 2013, 52, 1848-1860.	0.4	14
25	Synthesis and Characterization of Polybenzoxazinone and its Prepolymer Using Gas Separation. Macromolecular Chemistry and Physics, 2013, 214, 2867-2874.	1.1	14
26	High-strength cellulose–polyacrylamide hydrogels: Mechanical behavior and structure depending on the type of cellulose. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100, 103385.	1.5	14
27	Polyimide-Based Nanocomposites with Binary CeO2/Nanocarbon Fillers: Conjointly Enhanced Thermal and Mechanical Properties. Polymers, 2020, 12, 1952.	2.0	14
28	Orientated crystallization in drawn thermoplastic polyimide modified by carbon nanofibers. Polymer Engineering and Science, 2009, 49, 217-222.	1.5	13
29	Carbon nanocones/discs – a new type of filler to improve the thermal and mechanical properties of polymer films. Polymers for Advanced Technologies, 2012, 23, 408-413.	1.6	13
30	PGlu-Modified Nanocrystalline Cellulose Improves Mechanical Properties, Biocompatibility, and Mineralization of Polyester-Based Composites. Materials, 2019, 12, 3435.	1.3	13
31	Mechanical and thermal properties of nanocomposite films based on an aromatic polyimide and carbon nanocones. Physics of the Solid State, 2011, 53, 1509-1515.	0.2	11
32	Effect of carbon nanoparticles of different shapes on mechanical properties of aromatic polyimide-based composite films. Polymer Science - Series A, 2013, 55, 313-319.	0.4	11
33	Composite hydrogels based on polyacrylamide and cellulose: Synthesis and functional properties. Russian Journal of Applied Chemistry, 2016, 89, 772-779.	0.1	11
34	Mechanical response and network characterization of conductive polyaniline/polyacrylamide gels. Materials Chemistry and Physics, 2017, 187, 88-95.	2.0	11
35	Poly(Îμ-caprolactone)-based biocomposites reinforced with nanocrystalline cellulose grafted with poly(L-lactic acid). IOP Conference Series: Materials Science and Engineering, 2019, 500, 012021.	0.3	11
36	Bacterial Cellulose (Komagataeibacter rhaeticus) Biocomposites and Their Cytocompatibility. Materials, 2020, 13, 4558.	1.3	11

#	Article	IF	CITATIONS
37	Chemical and structural transformations in chitosan films in the course of storage. Russian Journal of Applied Chemistry, 2008, 81, 1992-1996.	0.1	10
38	Properties of aqueous solutions of hydroxyethyl cellulose-poly(N-vinylformamide) blends and of the related composite films. Polymer Science - Series A, 2012, 54, 730-737.	0.4	10
39	Friction and wear of powder coatings of epoxy composites with alumosilicate nanoparticles. Journal of Friction and Wear, 2012, 33, 101-107.	0.1	10
40	Unusual effect evidenced at the investigations of the mechanical behavior of composite hydrogels under cyclic compression. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 238-243.	1.5	10
41	Composite proton-conducting membranes with nanodiamonds. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 140-146.	1.0	10
42	Novel Polyester Amide Membranes Containing Biquinoline Units and Complex with Cu(I): Synthesis, Characterization, and Approbation for n-Heptane Isolation from Organic Mixtures. Polymers, 2020, 12, 645.	2.0	10
43	Bacterial Cellulose-Based Nanocomposites Containing Ceria and Their Use in the Process of Stem Cell Proliferation. Polymers, 2021, 13, 1999.	2.0	10
44	Properties of the methyl cellulose-polyvinylpyrrolidone binary system in solution and in the solid state. Russian Journal of Applied Chemistry, 2007, 80, 771-776.	0.1	9
45	Properties of carboxymethyl cellulose aqueous solutions with nanoparticle additives and the related composite films. Polymer Science - Series A, 2011, 53, 1167-1174.	0.4	9
46	Unexpected selective enhancement of the thermal stability of aromatic polyimide materials by cerium dioxide nanoparticles. Polymers for Advanced Technologies, 2019, 30, 1518-1524.	1.6	9
47	Composite Biomaterials Based on Poly(L-Lactic Acid) and Functionalized Cellulose Nanocrystals. Journal of Renewable Materials, 2020, 8, 383-395.	1.1	9
48	Modification of the mechanism of proton conductivity of the perfluorinated membrane copolymer by nanodiamonds. Russian Chemical Bulletin, 2021, 70, 1713-1717.	0.4	9
49	Aromatic polysulfone imides and membranes based on them. Russian Journal of Applied Chemistry, 2009, 82, 1033-1040.	0.1	8
50	Conducting film-forming composites based on polyaniline-polyimide blends. Polymer Science - Series A, 2009, 51, 311-316.	0.4	8
51	Properties of solutions and films of blends of water-soluble cellulose ethers with poviargol. Russian Journal of Applied Chemistry, 2010, 83, 102-108.	0.1	8
52	Structure and characteristics of film composites based on methyl cellulose, poviargol, and montmorillonite. Polymer Science - Series A, 2011, 53, 166-171.	0.4	8
53	Highly heat-resistant poly(Đ¾-hydroxy amide) binders of polyfunctional composites for microelectronics. Russian Journal of Applied Chemistry, 2016, 89, 1647-1654.	0.1	8
54	Optical, mechanical, and transport studies of nanodiamonds/poly(phenylene oxide) composites. Polymer Composites, 2018, 39, 3952-3961.	2.3	8

#	Article	IF	CITATIONS
55	Asymmetric Membranes Based on Copolyheteroarylenes with Imide, Biquinoline, and Oxazinone Units: Formation and Characterization. Polymers, 2019, 11, 1542.	2.0	8
56	Perfluorinated Proton-Conducting Membrane Composites with Functionalized Nanodiamonds. Membranes and Membrane Technologies, 2020, 2, 1-9.	0.6	8
57	Dualâ€phase polyphenylene oxide membranes with copolyimide branched modifiers. Journal of Applied Polymer Science, 2020, 137, 49543.	1.3	8
58	Aminated Graphene-Graft-Oligo(Glutamic Acid) /Poly(ε-Caprolactone) Composites: Preparation, Characterization and Biological Evaluation. Polymers, 2021, 13, 2628.	2.0	8
59	<scp>3Dâ€Printed</scp> composite scaffolds based on poly(<scp>εâ€caprolactone</scp>) filled with poly(glutamic acid)â€modified cellulose nanocrystals for improved bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2422-2437.	1.6	8
60	Aromatic Polyimide/MWCNT Hybrid Nanocomposites: Structure, Dynamics, and Properties. Journal of Macromolecular Science - Physics, 2012, 51, 1794-1814.	0.4	7
61	Energy of the elastic loading of anharmonic solids. Physics of the Solid State, 2013, 55, 668-674.	0.2	7
62	Properties of solutions of methyl cellulose blends with poly(N-methyl-N-vinylacetamide) in water and dimethylacetamide and of the related composite films. Polymer Science - Series A, 2014, 56, 158-168.	0.4	7
63	New composite materials based on polyvinylpyrrolidone and poly(diphenyl oxide) Tj ETQq1 1 0.784314 rgBT /	Overlock 10	Tf 50 422 To
64	Effect of nanoparticles of various types as fillers on mechanical properties of block samples of a heat-resistant polyimide material: A comparative analysis. Polymer Science - Series A, 2016, 58, 87-94.	0.4	7
65	Comparison of Supermacroporous Polyester Matrices Fabricated by Thermally Induced Phase Separation and 3D Printing Techniques. Key Engineering Materials, 0, 822, 277-283.	0.4	7
66	Polyamidoimides with side chromophoric groups. Russian Chemical Bulletin, 2005, 54, 1481-1487.	0.4	6
67	Properties of aqueous solutions containing blends of poly-N-vinylformamide with carboxymethyl cellulose of various degrees of ionization and of composite films of these polymers. Russian Journal of Applied Chemistry, 2010, 83, 1622-1627.	0.1	6
68	New approach to the formation of polyimide ultrafiltration membranes involving modified polyacrylonitrile. Petroleum Chemistry, 2012, 52, 527-532.	0.4	6
69	Adhesion, Growth, and Proliferation of Endothelial Cells on Biopolymer Extracellular Film Matrices. Bulletin of Experimental Biology and Medicine, 2014, 158, 153-158.	0.3	6
70	Polymers with cyanine chromophore groups in the main chain: Synthesis and properties. Polymer Science - Series B, 2014, 56, 352-359.	0.3	6
71	Peculiarities of the initial stages of carbonization processes in polyimide-based nanocomposite films containing carbon nanoparticles. Cogent Chemistry, 2015, 1, 1076712.	2.5	6
72	Composite films based on polyphenylene oxide modified with endofullerenes C60 with encapsulated iron atoms. Russian Journal of Applied Chemistry, 2017, 90, 1549-1557.	0.1	6

Iosif Gofman

#	Article	IF	CITATIONS
73	Interplay of polymer matrix and nanosized redox dopant with regard to thermo-oxidative and pyrolytic stability: CeO2 nanoparticles in a milieu of aromatic polyimides. Materials Today Communications, 2020, 22, 100803.	0.9	6
74	The experimental study of tissue integration into porous titanium implants. HIP International, 2020, , 112070002094348.	0.9	6
75	Mechanisms of reversible thermal deformation of oriented polymers. Physics of the Solid State, 2001, 43, 1382-1388.	0.2	5
76	Optical and photosensitive properties of comb-shaped polyamide-imides. Semiconductors, 2003, 37, 821-824.	0.2	5
77	The effect of planar molecular orientation on the mechanical properties of rigid-chain polymide films. Polymer Science - Series A, 2007, 49, 1114-1119.	0.4	5
78	Properties of cellulose solutions in methylmorpholine N-oxide containing montmorillonite nanoparticles and of composite films thereof. Russian Journal of Applied Chemistry, 2011, 84, 1261-1265.	0.1	5
79	Properties of mixed aqueous solutions of methyl cellulose with polyethylene oxide and of composite films prepared from them. Russian Journal of Applied Chemistry, 2011, 84, 1575-1581.	0.1	5
80	Synthesis and properties of iridium polymer complexes based on novel bipyridyl ligands. Russian Chemical Bulletin, 2012, 61, 966-972.	0.4	5
81	Dynamic mechanical analysis of multiblock (segmental) polyesterimides. Russian Journal of Applied Chemistry, 2013, 86, 920-927.	0.1	5
82	Properties of solutions and films of blends of ethyl cellulose with polyvinylpyrrolidone and Poviargol. Russian Journal of Applied Chemistry, 2013, 86, 558-563.	0.1	5
83	AFM analysis of the surface morphology, structure, and mechanical properties of methylcellulose mixtures with colloidal silver dispersions. Journal of Surface Investigation, 2014, 8, 877-886.	0.1	5
84	Chitosan-dextran branched copolymers: Synthesis and properties. Polymer Science - Series B, 2014, 56, 341-351.	0.3	5
85	Properties of composite films of methylcellulose with arabinogalactan. Polymer Science - Series A, 2015, 57, 430-436.	0.4	5
86	Influence of Macromolecular Brushes with Polyimide Backbones and Poly(methyl methacrylate) Side Chains on Structure, Physical, and Transport Properties of Polyphthalamide. Polymer Engineering and Science, 2020, 60, 481-490.	1.5	5
87	Chitin Cryogels Prepared by Regeneration from Phosphoric Acid Solutions. Materials, 2021, 14, 5191.	1.3	5
88	BONE AND SOFT TISSUES INTEGRATION IN POROUS TITANIUM IMPLANTS (EXPERIMENTAL RESEARCH). Travmatologiâ I Ortopediâ Rossii, 2018, 24, 95-107.	0.1	5
89	Biophysical Characterization and Cytocompatibility of Cellulose Cryogels Reinforced with Chitin Nanowhiskers. Polymers, 2022, 14, 2694.	2.0	5
90	Light-sensitive chalcone-containing poly(amido imides). Polymer Science - Series A, 2006, 48, 569-577.	0.4	4

#	Article	IF	CITATIONS
91	Nanocomposites based on polyamidoimide and octahedral silsesquioxanes. Russian Journal of Applied Chemistry, 2013, 86, 415-422.	0.1	4
92	Comparative Evaluation of Different Methods of Carboxylation of Carbon Nanotubes as a Modifier of Mechanical Properties of Heat-Resistant Polyimide Based Nanocomposites. Fibre Chemistry, 2015, 47, 236-243.	0.0	4
93	Iridium metal–polymer complexes based on bipyridyl ligands. Polymer Science - Series B, 2016, 58, 703-711.	0.3	4
94	Synthesis and photoluminescence properties of coâ€polyamides with anthrazolineâ€containing units in the main chain. Luminescence, 2018, 33, 559-566.	1.5	4
95	Prospects of coâ€poly(biquinolineâ€hydrazideâ€imide)s for separation of benzeneâ€isopropanol mixture via pervaporation. Journal of Applied Polymer Science, 2022, 139, 51646.	1.3	4
96	On changes in mechanical properties of polyamic acid during solid phase chemical imidization. Polymer Science USSR, 1985, 27, 905-911.	0.2	3
97	Negative longitudinal expansion and the amplitude of longitudinal vibrations in poly(ethylene) crystals. Physics of the Solid State, 2002, 44, 964-971.	0.2	3
98	Polyimide Membranes Formed on a Metal Grid Matrix by the Langmuir–Blodgett Method. Technical Physics Letters, 2005, 31, 341.	0.2	3
99	Mechanical characteristics of films based on comb-shaped poly(amidoimides) with different contents of side chromophoric groups. Polymer Science - Series A, 2010, 52, 255-260.	0.4	3
100	Films of polyamides with phenylpyridine units in the backbone. Russian Journal of Applied Chemistry, 2010, 83, 1862-1867.	0.1	3
101	Impact of Endometallofullerene on P84 Copolyimide Transport and Thermomechanical Properties. Polymers, 2018, 10, 1108.	2.0	3
102	Preparation and properties of chitosan–nanodiamond dispersions and composite films. Diamond and Related Materials, 2019, 98, 107483.	1.8	3
103	Copolyamides Based on Anthrazoline-Containing Diamines: Synthesis and Properties. Polymer Science - Series B, 2019, 61, 302-308.	0.3	3
104	Orientational uniaxial stretching of proton conducting perfluorinated membranes. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
105	Correlation between characteristics of thermal and stress reversible deformations in solids with different structures. Physics of the Solid State, 2004, 46, 1149-1157.	0.2	2
106	Heat-resistant foamed organoplastics based on a combination of polyimide felt, polyimide binders, and montmorillonite nanoparticles. Russian Journal of Applied Chemistry, 2006, 79, 439-444.	0.1	2
107	Synthesis and properties of glycidyl methacrylate copolymers with side chromophore groups. Polymer Science - Series A, 2007, 49, 773-781.	0.4	2
108	Structure and properties of porous film materials based on an aliphatic copolyamide. Russian Journal of Applied Chemistry, 2011, 84, 1795-1799.	0.1	2

#	Article	IF	CITATIONS
109	Macromolecular ligands carrying side bipyridyl-containing groups and their metal-polymer complexes with iridium. Russian Journal of Applied Chemistry, 2012, 85, 1703-1710.	0.1	2
110	Supramolecular structure formation of Langmuir-Blodgett films of comblike precursor and polyimide. Crystallography Reports, 2013, 58, 295-301.	0.1	2
111	Properties of solutions and films of blends of water-soluble cellulose ethers with Zosterin. Russian Journal of Applied Chemistry, 2014, 87, 942-949.	0.1	2
112	Effect of nanosized carbon fillers on the hydrolytic stability of films of a heat-resistant aromatic polyimide. Russian Journal of Applied Chemistry, 2017, 90, 70-76.	0.1	2
113	Formation of crystalline heteroepitaxial SiC films on Si by carbonization of polyimide Langmuir–Blodgett films. Japanese Journal of Applied Physics, 2017, 56, 06CH08.	0.8	2
114	Influence of Nanosized Cerium Oxide on the Thermal Characteristics of Aromatic Polyimide Films. Polymer Science - Series C, 2020, 62, 196-204.	0.8	2
115	Influence of nanoparticles of various types as fillers on resistance to hydrolysis of films of heat-resistant polyimide. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 666-673.	0.2	2
116	THE CONFORMATIONAL MECHANISM OF THERMOELASTICITY OF ORIENTED POLYETHYLENE. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 173-184.	1.8	1
117	Influence of zone stretching on the properties of semicrystalline thermoplastic polyimide. Russian Journal of Applied Chemistry, 2006, 79, 1884-1889.	0.1	1
118	Aliphatic polyurethane-silica nanocomposites prepared by the parallel synthesis: Morphology and mechanical characteristics. Physics of the Solid State, 2010, 52, 612-619.	0.2	1
119	Film Composites of polyimide with polyaniline and poly(aniline-co-anthranilic acid). Polymer Science - Series A, 2011, 53, 800-810.	0.4	1
120	Pore sealing of SiOCH ultra low-k dielectrics with polyimide Langmuir-Blodgett film. Materials Research Society Symposia Proceedings, 2012, 1428, 32.	0.1	1
121	Morphology evolution induced by carbon nanotubes on thermal and mechanical characters of semi-crystalline aromatic polyimide. Polymer Bulletin, 2013, 70, 3129-3142.	1.7	1
122	Properties of Carboxymethylcellulose—Arabinogalactan Composite Films. Fibre Chemistry, 2015, 47, 183-186.	0.0	1
123	Synthesis and Properties of New 2,6-Poly(phenylquinoline)s and Their Composites with 2,1,3-Benzothiadiazole. Polymer Science - Series B, 2017, 59, 718-729.	0.3	1
124	Hydrolytic Stability of Films of Aromatic Polyimides and Composites on Their Basis, Filled with Carbon Nanocones. Russian Journal of Applied Chemistry, 2018, 91, 1460-1470.	0.1	1
125	New Polymers with Phenanthroline Units: Synthesis and Properties. Polymer Science - Series B, 2019, 61, 42-50.	0.3	1
126	Synthesis of Poly(ester-graft-methyl methacrylate) on a Macroinitiator with Lateral Sulfonyl Chloride Groups by Atom Transfer Radical Polymerization. Polymer Science - Series B, 2021, 63, 385-391.	0.3	1

#	Article	IF	CITATIONS
127	Novel hydroxylâ€containing and thermoâ€dehydrocyclizable polycondensation polymers for multifunctional materials: Synthesis, properties, application. Journal of Applied Polymer Science, 2022, 139, 51978.	1.3	1
128	Metal Oxide Nanoparticles: An Effective Tool to Modify the Functional Properties of Thermally Stable Polyimide Films. Polymers, 2022, 14, 2580.	2.0	1
129	Microporous Polyimide Films Based on Blends of Polyamido Acid and Cellulose Derivatives. Russian Journal of Applied Chemistry, 2002, 75, 805-810.	0.1	0
130	Photosensitivity of new photoconductive polymers based on ruthenium-biquinolyl complexes. Semiconductors, 2003, 37, 818-820.	0.2	0
131	Thermostable foam organoplastics made from polyimide binders and polyimide felt. Fibre Chemistry, 2006, 38, 428-433.	0.0	0
132	Heteroepitaxial growth of SiC films by carbonization of polyimide Langmuir-Blodgett films on Si. MATEC Web of Conferences, 2017, 98, 04002.	0.1	0
133	Formation of Highly Conducting Optically Transparent Films with Multigraphene Structure via Carbonization of Polyimide Langmuir–Blodgett Films. Technical Physics Letters, 2019, 45, 471-474.	0.2	0
134	New copolyhydrazides with anthrazoline fragments in the main chain: synthesis and optical properties. Luminescence, 2021, 36, 1961-1968.	1.5	0
135	Formation of branched structure of polyimide macromolecules in the temperatures range below the onset of the thermal destruction. Advanced Material Science, 2019, 4, .	0.3	0
136	Impact of nano-sized ceria particles upon the cyclization kinetics of poly(amic acid) films. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 475-479.	0.2	0
137	New Macromolecular Ligands with Main-Chain Pyridylquinoline Units and Their Metal-Polymer Complexes with Europium. Polymer Science - Series B, 0, , 1.	0.3	0