
Yan-Ru Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/332347/publications.pdf Version: 2024-02-01

<u> Υλη-Ριι Γιη</u>

#	Article	IF	CITATIONS
1	Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale, 2014, 6, 10281-10288.	5.6	105
2	High-performance and high-durability perovskite photovoltaic devices prepared using ethylammonium iodide as an additive. Journal of Materials Chemistry A, 2015, 3, 9271-9277.	10.3	87
3	Carbon Nanodot Additives Realize Highâ€Performance Airâ€Stable p–i–n Perovskite Solar Cells Providing Efficiencies of up to 20.2%. Advanced Energy Materials, 2018, 8, 1802323.	19.5	86
4	High-Performance, Semitransparent, Easily Tunable Vivid Colorful Perovskite Photovoltaics Featuring Ag/ITO/Ag Microcavity Structures. Journal of Physical Chemistry C, 2016, 120, 4233-4239.	3.1	67
5	Improved Blend Film Morphology and Free Carrier Generation Provide a High-Performance Ternary Polymer Solar Cell. ACS Applied Materials & Interfaces, 2021, 13, 1076-1085.	8.0	62
6	Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review. Materials, 2014, 7, 2411-2439.	2.9	56
7	Low-temperature, simple and efficient preparation of perovskite solar cells using Lewis bases urea and thiourea as additives: stimulating large grain growth and providing a PCE up to 18.8%. RSC Advances, 2018, 8, 19610-19615.	3.6	54
8	Increased open circuit voltage in a fluorinated quinoxaline-based alternating conjugated polymer. Polymer Chemistry, 2013, 4, 1161-1166.	3.9	52
9	Microcavity Structure Provides Highâ€Performance (>8.1%) Semitransparent and Colorful Organic Photovoltaics. Advanced Functional Materials, 2018, 28, 1703398.	14.9	48
10	Facilely Synthesized spiro[fluoreneâ€9,9′â€phenanthrenâ€10′â€one] in Donor–Acceptor–Donor Holeâ€Transporting Materials for Perovskite Solar Cells. ChemSusChem, 2018, 11, 3225-3233.	6.8	47
11	Highly Thermal Stable and Efficient Organic Photovoltaic Cells with Crosslinked Networks Appending Open age Fullerenes as Additives. Advanced Functional Materials, 2015, 25, 207-213.	14.9	46
12	Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 40050-40061.	8.0	46
13	A Nearâ€Infrared Absorption Small Molecule Acceptor for Highâ€Performance Semitransparent and Colorful Binary and Ternary Organic Photovoltaics. ChemSusChem, 2020, 13, 903-913.	6.8	37
14	Simple structured polyetheramines, Jeffamines, as efficient cathode interfacial layers for organic photovoltaics providing power conversion efficiencies up to 9.1%. Journal of Materials Chemistry A, 2017, 5, 10424-10429.	10.3	36
15	Increasing the Openâ€Circuit Voltage in Highâ€Performance Organic Photovoltaic Devices through Conformational Twisting of an Indacenodithiopheneâ€Based Conjugated Polymer. Macromolecular Rapid Communications, 2013, 34, 1623-1628.	3.9	32
16	High-Performance Semitransparent Organic Photovoltaics Featuring a Surface Phase-Matched Transmission-Enhancing Ag/ITO Electrode. ACS Applied Materials & Interfaces, 2020, 12, 39496-39504.	8.0	32
17	Intrinsically Stretchable Nanostructured Silver Electrodes for Realizing Efficient Strain Sensors and Stretchable Organic Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 27853-27862.	8.0	31
18	Co2+-Doped BiOBrxCl1-x hierarchical microspheres display enhanced visible-light photocatalytic performance in the degradation of rhodamine B and antibiotics and the inactivation of E. coli. Journal of Hazardous Materials, 2021, 402, 123457.	12.4	30

Yan-Ru Lin

#	Article	IF	CITATIONS
19	Highly Efficient Non-Fullerene Organic Photovoltaics Processed from <i>o</i> -Xylene without Using Additives. Journal of Physical Chemistry C, 2017, 121, 21969-21974.	3.1	29
20	Two-step annealing of NiO enhances the NiO –perovskite interface for high-performance ambient-stable p–i–n perovskite solar cells. Applied Surface Science, 2020, 504, 144478.	6.1	25
21	Triphenylamine dibenzofulvene–derived dopantâ€free hole transporting layer induces micrometerâ€sized perovskite grains for highly efficient near 20% for pâ€iâ€n perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 49-59.	8.1	24
22	Tip Shaping for ZnO Nanorods via Hydrothermal Growth of ZnO Nanostructures in a Stirred Aqueous Solution. Crystal Growth and Design, 2012, 12, 3849-3855.	3.0	23
23	Highly Efficient Inverted Organic Photovoltaics Containing Aliphatic Hyperbranched Polymers as Cathode Modified Layers. Macromolecules, 2016, 49, 7837-7843.	4.8	23
24	Indacenodithiophene-based N-type conjugated polymers provide highly thermally stable ternary organic photovoltaics displaying a performance of 17.5%. Journal of Materials Chemistry A, 2021, 9, 9780-9790.	10.3	23
25	Forming a Metal-Free Oxidatively Coupled Agent, Bicarbazole, as a Defect Passivation for HTM and an Interfacial Layer in a p–i–n Perovskite Solar Cell Exhibits Nearly 20% Efficiency. Chemistry of Materials, 2020, 32, 127-138.	6.7	22
26	Surface properties of buffer layers affect the performance of PM6:Y6–based organic photovoltaics. Organic Electronics, 2020, 87, 105944.	2.6	19
27	Perovskite Photosensors Integrated with Silver Resonantâ€Cavity Color Filters Display Color Perception Beyond That of the Human Eye. Advanced Functional Materials, 2020, 30, 2002503.	14.9	19
28	Synergistic improvements in the performance and stability of inverted planar MAPbl ₃ -based perovskite solar cells incorporating benzylammonium halide salt additives. Materials Chemistry Frontiers, 2021, 5, 3378-3387.	5.9	18
29	Realizing Stable Highâ€Performance and Lowâ€Energyâ€Loss Ternary Photovoltaics through Judicious Selection of the Third Component. Solar Rrl, 2021, 5, 2100450.	5.8	18
30	Small Molecules with Controllable Molecular Weights Passivate Surface Defects in Air‧table pâ€iâ€n Perovskite Solar Cells. Advanced Electronic Materials, 2021, 7, 2000870.	5.1	18
31	Photovoltaic Performance Enhancement of Perovskite Solar Cells Using Polyimide and Polyamic Acid as Additives. Journal of Physical Chemistry C, 2019, 123, 23826-23833.	3.1	17
32	Embedding a Diketopyrrolopyrrole-Based Cross-linking Interfacial Layer Enhances the Performance of Organic Photovoltaics. ACS Applied Materials & amp; Interfaces, 2018, 10, 8885-8892.	8.0	15
33	The green poly-lysine enantiomers as electron-extraction layers for high performance organic photovoltaics. Journal of Materials Chemistry C, 2019, 7, 12572-12579.	5.5	15
34	Si-Bridged Ladder-Type Small-Molecule Acceptors for High-Performance Organic Photovoltaics. ACS Applied Materials & Interfaces, 2019, 11, 1125-1134.	8.0	15
35	Comprehensive Study on Chemical and Hot Press-Treated Silver Nanowires for Efficient Polymer Solar Cell Application. Polymers, 2017, 9, 635.	4.5	14
36	Enhanced Device Performance and Stability of Organic Photovoltaics Incorporating a Star-Shaped Multifunctional Additive. ACS Applied Energy Materials, 2019, 2, 833-843.	5.1	14

Yan-Ru Lin

#	Article	IF	CITATIONS
37	Thermally evaporable 5,10-dihydroindeno[2,1-a]indenes form efficient interfacial layers in organic solar cells. RSC Advances, 2015, 5, 7897-7904.	3.6	13
38	Carbonized Bambooâ€Derived Carbon Nanodots as Efficient Cathode Interfacial Layers in Highâ€Performance Organic Photovoltaics. Advanced Materials Interfaces, 2018, 5, 1800031.	3.7	13
39	Efficient Ternary Organic Photovoltaics Using Two Conjugated Polymers and a Nonfullerene Acceptor with Complementary Absorption and Cascade Energy-Level Alignment. Journal of Physical Chemistry C, 2018, 122, 24585-24591.	3.1	13
40	Effects of the additives <i>n</i> -propylammonium or <i>n</i> -butylammonium iodide on the performance of perovskite solar cells. RSC Advances, 2017, 7, 55986-55992.	3.6	12
41	Recent Progress on Advanced Optical Structures for Emerging Photovoltaics and Photodetectors. Advanced Energy and Sustainability Research, 2020, 1, 2000035.	5.8	11
42	Facile star-shaped tetraphenylethylene-based molecules with fused ring-terminated diarylamine as interfacial hole transporting materials for inverted perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 1373-1387.	5.9	11
43	New selenophene-based low-band gap conjugated polymers for organic photovoltaics. Journal of Polymer Science Part A, 2013, 51, 4550-4557.	2.3	10
44	Polythiophenes comprising conjugated pendants toward long-term air-stable inverted polymer solar cells with high open circuit voltages. Journal of Materials Chemistry A, 2013, 1, 8950.	10.3	9
45	One-pot synthesis of colloidal Cdx:CuInS2 quaternary quantum dots used as sensitizers in photovoltaic cells. RSC Advances, 2015, 5, 36605-36613.	3.6	9
46	The Twisted Benzo[<i>ghi</i>]â€Perylenetriimide Dimer as a 3D Electron Acceptor for Fullereneâ€Free Organic Photovoltaics. Chemistry - A European Journal, 2018, 24, 17590-17597.	3.3	9
47	Facilitating epitaxial growth of ZnO films on patterned GaN layers: A solution-concentration-induced successive lateral growth mechanism. Current Applied Physics, 2018, 18, 1-11.	2.4	7
48	Realizing Broadband NIR Photodetection and Ultrahigh Responsivity with Ternary Blend Organic Photodetector. Nanomaterials, 2022, 12, 1378.	4.1	7
49	A multifunctional ligand for defect passivation of perovskite film realizes air-stable perovskite solar cells with efficiencies exceeding 20%. Sustainable Energy and Fuels, 2022, 6, 1950-1958.	4.9	6
50	Epitaxial Growth of ZnO Films on Patternedc-Plane GaN Layer Using Hydrothermal Method. ECS Journal of Solid State Science and Technology, 2015, 4, N111-N116.	1.8	3
51	Perovskite Solar Cells: Carbon Nanodot Additives Realize Highâ€Performance Airâ€Stable p–i–n Perovskite Solar Cells Providing Efficiencies of up to 20.2% (Adv. Energy Mater. 34/2018). Advanced Energy Materials, 2018, 8, 1870147.	19.5	3
52	Organic Photovoltaics: Highly Thermal Stable and Efficient Organic Photovoltaic Cells with Crosslinked Networks Appending Open-Cage Fullerenes as Additives (Adv. Funct. Mater. 2/2015). Advanced Functional Materials, 2015, 25, 206-206.	14.9	1
53	Semitransparent, easily tunable vivid colorful perovskite solar cells featuring Ag/ITO/Ag microcavity structures. , 2016, , .		1
54	Novel Facilely Synthesized spiro[Fluorene-9,9′-phenanthren-10′-one] in D-A-D Hole-transporting Materials for Perovskite Solar Cells. , 2018, , .		0