
Mirza Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3323366/publications.pdf Version: 2024-02-01

MIDZA SHAH

#	Article	IF	CITATIONS
1	A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer, 1979, 22, 547-556.	2.5	1,198
2	Comprehensive correlations for heat transfer during condensation in conventional and mini/micro channels in all orientations. International Journal of Refrigeration, 2016, 67, 22-41.	1.8	98
3	A correlation for heat transfer during condensation in horizontal mini/micro channels. International Journal of Refrigeration, 2016, 64, 187-202.	1.8	61
4	Unified correlation for heat transfer during boiling in plain mini/micro and conventional channels. International Journal of Refrigeration, 2017, 74, 606-626.	1.8	60
5	Improved method for calculating evaporation from indoor water pools. Energy and Buildings, 2012, 49, 306-309.	3.1	51
6	Prediction of heat transfer during boiling of cryogenic fluids flowing in tubes. Cryogenics, 1984, 24, 231-236.	0.9	47
7	New correlation for heat transfer during subcooled boiling in plain channels and annuli. International Journal of Thermal Sciences, 2017, 112, 358-370.	2.6	42
8	A generalized graphical method for predicting chf in uniformly heated vertical tubes. International Journal of Heat and Mass Transfer, 1979, 22, 557-568.	2.5	38
9	Improved correlation for heat transfer during condensation in conventional and mini/micro channels. International Journal of Refrigeration, 2019, 98, 222-237.	1.8	36
10	A method for predicting heat transfer during boiling of mixtures in plain tubes. Applied Thermal Engineering, 2015, 89, 812-821.	3.0	30
11	Prediction of heat transfer during condensation in inclined plain tubes. Applied Thermal Engineering, 2016, 94, 82-89.	3.0	30
12	A general correlation for critical heat flux in horizontal channels. International Journal of Refrigeration, 2015, 59, 37-52.	1.8	26
13	A correlation for heat transfer during subcooled boiling on a single tube with forced crossflow. International Journal of Heat and Fluid Flow, 1984, 5, 13-20.	1.1	23
14	General equation for flow condensation heat transfer coefficient in different orientations of helical coils of smooth tubes using genetic programming. International Communications in Heat and Mass Transfer, 2020, 119, 104916.	2.9	19
15	A correlation for heat transfer during boiling on bundles of horizontal plain and enhanced tubes. International Journal of Refrigeration, 2017, 78, 47-59.	1.8	17
16	A general correlation for critical heat flux in annuli. International Journal of Heat and Mass Transfer, 1980, 23, 225-234.	2.5	14
17	Improved model for calculation of evaporation from water pools. Science and Technology for the Built Environment, 2018, 24, 1064-1074.	0.8	14
18	Comprehensive correlation for dispersed flow film boiling heat transfer in mini/macro tubes. International Journal of Refrigeration, 2017, 78, 32-46.	1.8	13

Mirza Shah

#	Article	IF	CITATIONS
19	Prediction of heat transfer during condensation of carbon dioxide in channels. Applied Thermal Engineering, 2016, 93, 192-199.	3.0	9
20	Heat transfer during condensation in corrugated plate heat exchangers. International Journal of Refrigeration, 2021, 127, 180-193.	1.8	9
21	A general correlation for heat transfer during evaporation of falling films on single horizontal plain tubes. International Journal of Refrigeration, 2021, 130, 424-433.	1.8	9
22	Improved correlation for heat transfer during condensation in mini and macro channels. International Journal of Heat and Mass Transfer, 2022, 194, 123069.	2.5	9
23	General correlation for maximum heat transfer to surfaces submerged in gas-fluidized beds. Chemical Engineering Science, 2018, 185, 127-140.	1.9	8
24	Improved General Correlation for CHF in Uniformly Heated Vertical Annuli With Upflow. Heat Transfer Engineering, 2016, 37, 557-570.	1.2	7
25	Applicability of General Correlations for Critical Heat Flux in Conventional Tubes to Mini/Micro Channels. Heat Transfer Engineering, 2017, 38, 1-10.	1.2	7
26	Heat Transfer During Condensation Inside Small Channels: Applicability of General Correlation for Macrochannels. , 2010, , .		5
27	Evaluation of methods for prediction of evaporation from water pools. Journal of Building Physics, 2022, 45, 629-648.	1.2	5
28	Prediction of heat transfer in evaporation of saturated falling films on bundles of horizontal tubes. International Journal of Refrigeration, 2021, 131, 416-425.	1.8	5
29	NEW GENERAL CORRELATION FOR HEAT TRANSFER DURING SATURATED BOILING IN MINI AND MACRO CHANNELS. International Journal of Refrigeration, 2022, , .	1.8	4
30	Prediction of Heat Transfer during Condensation in Non-Circular Channels. Inventions, 2019, 4, 31.	1.3	3
31	Prediction of dryout in evaporation of falling films on horizontal plain tubes. Chemical Engineering Research and Design, 2022, 179, 527-534.	2.7	3
32	Prediction of CHF in helical coils. Nuclear Engineering and Design, 2021, 373, 111031.	0.8	2
33	A Correlation for Maximum Heat Transfer to Cylinders and Spheres in Gas-Fluidized Beds. , 2018, , .		2
34	General Correlation for Heat Transfer to Gas–Liquid Flow in Vertical Channels. Journal of Thermal Science and Engineering Applications, 2018, 10, .	0.8	1
35	Calculation of Evaporation From Fukushima Nuclear Power Plant Spent Fuel Pools. Journal of Nuclear Engineering and Radiation Science, 2019, 5, .	0.2	1
36	General Correlation for Heat Transfer During Two-Component Gas-Liquid Flow in Horizontal Pipes. , 2018, , .		0

#	Article	IF	CITATIONS
37	Calculation of Evaporation From Fukushima NPP Spent Fuel Pools. , 2018, , .		0
38	A Correlation for Heat Transfer to Two-Component Gas-Liquid Flowing in Vertical Channels. , 2018, , .		0
39	Comments on the paper by Morrow etÂal. (2021) Flow condensation heat transfer performance of natural and emerging synthetic refrigerants, International Journal of Refrigeration. International Journal of Refrigeration, 2022, 135, 39-40.	1.8	0