Tor D Wager

List of Publications by Citations

Source: https://exaly.com/author-pdf/3322922/tor-d-wager-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

237 papers

44,550 citations

78 h-index

211 g-index

262 ext. papers

53,782 ext. citations

8.7 avg, IF

7.87 L-index

#	Paper	IF	Citations
237	The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. <i>Cognitive Psychology</i> , 2000 , 41, 49-100	3.1	8695
236	Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. <i>American Journal of Psychiatry</i> , 2007 , 164, 1476-88	11.9	2317
235	Large-scale automated synthesis of human functional neuroimaging data. <i>Nature Methods</i> , 2011 , 8, 665	- 70 .6	1984
234	A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. <i>Neuroscience and Biobehavioral Reviews</i> , 2012 , 36, 747-56	9	1584
233	Valid conjunction inference with the minimum statistic. <i>NeuroImage</i> , 2005 , 25, 653-60	7.9	1529
232	Placebo-induced changes in FMRI in the anticipation and experience of pain. <i>Science</i> , 2004 , 303, 1162-7	33.3	1453
231	Neuroimaging studies of working memory: a meta-analysis. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2003 , 3, 255-74	3.5	1398
230	The brain basis of emotion: a meta-analytic review. Behavioral and Brain Sciences, 2012, 35, 121-43	0.9	1386
229	Prefrontal-subcortical pathways mediating successful emotion regulation. <i>Neuron</i> , 2008 , 59, 1037-50	13.9	1209
228	Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. <i>Cerebral Cortex</i> , 2014 , 24, 2981-90	5.1	1049
227	Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. <i>JAMA Psychiatry</i> , 2015 , 72, 603-11	14.5	970
226	Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. <i>NeuroImage</i> , 2003 , 19, 513-31	7.9	937
225	An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 2013, 368, 1388-	· 979. 2	905
224	Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. <i>NeuroImage</i> , 2008 , 42, 998-1031	7.9	826
223	Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. <i>NeuroImage</i> , 2014 , 91, 412-9	7.9	796
222	Ventromedial prefrontal-subcortical systems and the generation of affective meaning. <i>Trends in Cognitive Sciences</i> , 2012 , 16, 147-56	14	584
221	Interference resolution: insights from a meta-analysis of neuroimaging tasks. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2007 , 7, 1-17	3.5	568

(2005-2018)

220	The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. <i>Developmental Cognitive Neuroscience</i> , 2018 , 32, 43-54	5.5	557
219	A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. <i>Journal of Cognitive Neuroscience</i> , 2012 , 24, 1742-!	52 ^{.1}	533
218	Neuroimaging studies of shifting attention: a meta-analysis. <i>NeuroImage</i> , 2004 , 22, 1679-93	7.9	517
217	Neurobiological mechanisms of the placebo effect. <i>Journal of Neuroscience</i> , 2005 , 25, 10390-402	6.6	501
216	Building better biomarkers: brain models in translational neuroimaging. <i>Nature Neuroscience</i> , 2017 , 20, 365-377	25.5	484
215	Placebo effects on human mu-opioid activity during pain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 11056-61	11.5	442
214	The neuroscience of placebo effects: connecting context, learning and health. <i>Nature Reviews Neuroscience</i> , 2015 , 16, 403-18	13.5	373
213	Common and unique components of response inhibition revealed by fMRI. <i>NeuroImage</i> , 2005 , 27, 323-4	0 7.9	364
212	Social rejection shares somatosensory representations with physical pain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6270-5	11.5	356
211	The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature. <i>Cerebral Cortex</i> , 2016 , 26, 1910-1922	5.1	346
210	Optimization of experimental design in fMRI: a general framework using a genetic algorithm. <i>NeuroImage</i> , 2003 , 18, 293-309	7.9	339
209	Brain mediators of cardiovascular responses to social threat: part I: Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. <i>NeuroImage</i> , 2009 , 47, 821-35	7.9	324
208	Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. <i>NeuroImage</i> , 2009 , 45, S187-98	7.9	310
207	Meta-analysis of functional neuroimaging data: current and future directions. <i>Social Cognitive and Affective Neuroscience</i> , 2007 , 2, 150-8	4	304
206	Ten simple rules for neuroimaging meta-analysis. <i>Neuroscience and Biobehavioral Reviews</i> , 2018 , 84, 15	1-961	296
205	Brain mediators of predictive cue effects on perceived pain. <i>Journal of Neuroscience</i> , 2010 , 30, 12964-7	76.6	275
204	Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. <i>NeuroImage</i> , 2009 , 45, 810-23	7.9	250
203	Increased sensitivity in neuroimaging analyses using robust regression. <i>NeuroImage</i> , 2005 , 26, 99-113	7.9	234

202	Brain mediators of cardiovascular responses to social threat, part II: Prefrontal-subcortical pathways and relationship with anxiety. <i>NeuroImage</i> , 2009 , 47, 836-51	7.9	230
201	How expectations shape pain. <i>Neuroscience Letters</i> , 2012 , 520, 140-8	3.3	226
200	The resilience framework as a strategy to combat stress-related disorders. <i>Nature Human Behaviour</i> , 2017 , 1, 784-790	12.8	210
199	Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. <i>Journal of Neuroscience</i> , 2011 , 31, 439-52	6.6	209
198	The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. <i>NeuroImage</i> , 2011 , 57, 303-11	7.9	198
197	A Sensitive and Specific Neural Signature for Picture-Induced Negative Affect. <i>PLoS Biology</i> , 2015 , 13, e1002180	9.7	197
196	How the number of learning trials affects placebo and nocebo responses. <i>Pain</i> , 2010 , 151, 430-439	8	195
195	Detection of time-varying signals in event-related fMRI designs. <i>NeuroImage</i> , 2008 , 43, 509-20	7.9	193
194	Dynamic connectivity regression: determining state-related changes in brain connectivity. <i>NeuroImage</i> , 2012 , 61, 907-20	7.9	190
193	Implications of Placebo and Nocebo Effects for Clinical Practice: Expert Consensus. <i>Psychotherapy and Psychosomatics</i> , 2018 , 87, 204-210	9.4	180
192	Separate neural representations for physical pain and social rejection. <i>Nature Communications</i> , 2014 , 5, 5380	17.4	176
191	The relation between statistical power and inference in fMRI. PLoS ONE, 2017 , 12, e0184923	3.7	172
190	Evaluating the consistency and specificity of neuroimaging data using meta-analysis. <i>NeuroImage</i> , 2009 , 45, S210-21	7.9	169
189	Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain. <i>PLoS Biology</i> , 2015 , 13, e1002036	9.7	163
188	Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization. <i>Journal of Neuroscience</i> , 2016 , 36, 6553-62	6.6	161
187	Performance-dependent inhibition of pain by an executive working memory task. <i>Pain</i> , 2010 , 149, 19-2	6 8	150
186	Representation of aversive prediction errors in the human periaqueductal gray. <i>Nature Neuroscience</i> , 2014 , 17, 1607-12	25.5	148
185	Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. <i>Nature Reviews Neurology</i> , 2017 , 13, 624-638	15	147

(2017-2010)

184	Cognitive neuroscience 2.0: building a cumulative science of human brain function. <i>Trends in Cognitive Sciences</i> , 2010 , 14, 489-96	14	139
183	A Bayesian model of category-specific emotional brain responses. <i>PLoS Computational Biology</i> , 2015 , 11, e1004066	5	136
182	Towards a neurophysiological signature for fibromyalgia. <i>Pain</i> , 2017 , 158, 34-47	8	127
181	Somatic and vicarious pain are represented by dissociable multivariate brain patterns. <i>ELife</i> , 2016 , 5,	8.9	127
180	Brain-Body Pathways Linking Psychological Stress and Physical Health. <i>Current Directions in Psychological Science</i> , 2015 , 24, 313-321	6.5	126
179	Regional specialization within the human striatum for diverse psychological functions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1907-12	11.5	125
178	The Anatomy of Suffering: Understanding the Relationship between Nociceptive and Empathic Pain. <i>Trends in Cognitive Sciences</i> , 2016 , 20, 249-259	14	119
177	Dissociable influences of opiates and expectations on pain. <i>Journal of Neuroscience</i> , 2012 , 32, 8053-64	6.6	119
176	Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. <i>Nature Neuroscience</i> , 2018 , 21, 283-289	25.5	114
175	The placebo effect: advances from different methodological approaches. <i>Journal of Neuroscience</i> , 2011 , 31, 16117-24	6.6	112
174	Correlations in Social Neuroscience Aren't Voodoo: Commentary on Vul et al. (2009). <i>Perspectives on Psychological Science</i> , 2009 , 4, 299-307	9.8	110
173	Pain in the ACC?. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E2474-5	11.5	104
172	Common Dysfunction of Large-Scale Neurocognitive Networks Across Psychiatric Disorders. <i>Biological Psychiatry</i> , 2019 , 85, 379-388	7.9	103
171	Placebo effects in laser-evoked pain potentials. <i>Brain, Behavior, and Immunity</i> , 2006 , 20, 219-30	16.6	102
170	Empathic Care and Distress: Predictive Brain Markers and Dissociable Brain Systems. <i>Neuron</i> , 2017 , 94, 1263-1273.e4	13.9	98
169	Identification of discrete functional subregions of the human periaqueductal gray. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 17101-6	11.5	98
168	Modular preprocessing pipelines can reintroduce artifacts into fMRI data. <i>Human Brain Mapping</i> , 2019 , 40, 2358-2376	5.9	89
167	Quantifying cerebral contributions to pain beyond nociception. <i>Nature Communications</i> , 2017 , 8, 14211	17.4	88

166	Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. <i>NeuroImage</i> , 2005 , 25, 206-18	7.9	87
165	Placebo Effects on the Neurologic Pain Signature: A Meta-analysis of Individual Participant Functional Magnetic Resonance Imaging Data. <i>JAMA Neurology</i> , 2018 , 75, 1321-1330	17.2	86
164	Brain Mechanisms of the Placebo Effect: An Affective Appraisal Account. <i>Annual Review of Clinical Psychology</i> , 2017 , 13, 73-98	20.5	85
163	Patient Expectancy as a Mediator of Placebo Effects in Antidepressant Clinical Trials. <i>American Journal of Psychiatry</i> , 2017 , 174, 135-142	11.9	85
162	Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging. <i>Neuron</i> , 2018 , 99, 257-273	13.9	84
161	Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. <i>Nature Reviews Neurology</i> , 2020 , 16, 381-400	15	81
160	The Potential Role of Sensory Testing, Skin Biopsy, and Functional Brain Imaging as Biomarkers in Chronic Pain Clinical Trials: IMMPACT Considerations. <i>Journal of Pain</i> , 2017 , 18, 757-777	5.2	80
159	Brain mediators of the effects of noxious heat on pain. <i>Pain</i> , 2014 , 155, 1632-1648	8	77
158	Conditioned placebo analgesia persists when subjects know they are receiving a placebo. <i>Journal of Pain</i> , 2015 , 16, 412-20	5.2	75
157	Sex differences in extinction recall in posttraumatic stress disorder: a pilot fMRI study. <i>Neurobiology of Learning and Memory</i> , 2014 , 113, 101-8	3.1	74
156	A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions. <i>Handbook of Experimental Pharmacology</i> , 2014 , 225, 37-69	3.2	73
155	What's in a word? How instructions, suggestions, and social information change pain and emotion. <i>Neuroscience and Biobehavioral Reviews</i> , 2017 , 81, 29-42	9	69
154	Transition to chronic pain: opportunities for novel therapeutics. <i>Nature Reviews Neuroscience</i> , 2018 , 19, 383-384	13.5	69
153	Distraction and placebo: two separate routes to pain control. <i>Psychological Science</i> , 2012 , 23, 246-53	7.9	67
152	Toward a taxonomy of attention shifting: individual differences in fMRI during multiple shift types. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2005 , 5, 127-43	3.5	66
151	Effect Size Estimation in Neuroimaging. <i>JAMA Psychiatry</i> , 2017 , 74, 207-208	14.5	65
150	The Cognitive Neuroscience of Placebo Effects: Concepts, Predictions, and Physiology. <i>Annual Review of Neuroscience</i> , 2017 , 40, 167-188	17	65
149	Bad and worse: neural systems underlying reappraisal of high- and low-intensity negative emotions. <i>Social Cognitive and Affective Neuroscience</i> , 2015 , 10, 172-9	4	65

148	Functional neuroanatomy of peripheral inflammatory physiology: A meta-analysis of human neuroimaging studies. <i>Neuroscience and Biobehavioral Reviews</i> , 2018 , 94, 76-92	9	63	
147	Common representation of pain and negative emotion in the midbrain periaqueductal gray. <i>Social Cognitive and Affective Neuroscience</i> , 2013 , 8, 609-16	4	59	
146	Neural changes in extinction recall following prolonged exposure treatment for PTSD: A longitudinal fMRI study. <i>NeuroImage: Clinical</i> , 2016 , 12, 715-723	5.3	59	
145	Multivariate Brain Prediction of Heart Rate and Skin Conductance Responses to Social Threat. <i>Journal of Neuroscience</i> , 2016 , 36, 11987-11998	6.6	55	
144	The neural bases of uninstructed negative emotion modulation. <i>Social Cognitive and Affective Neuroscience</i> , 2015 , 10, 10-8	4	53	
143	Modeling Pain Using fMRI: From Regions to Biomarkers. <i>Neuroscience Bulletin</i> , 2018 , 34, 208-215	4.3	53	
142	Mind matters: placebo enhances reward learning in Parkinson's disease. <i>Nature Neuroscience</i> , 2014 , 17, 1793-7	25.5	52	
141	Involvement of Sensory Regions in Affective Experience: A Meta-Analysis. <i>Frontiers in Psychology</i> , 2015 , 6, 1860	3.4	52	
140	Altered resting state functional connectivity of fear and reward circuitry in comorbid PTSD and major depression. <i>Depression and Anxiety</i> , 2017 , 34, 641-650	8.4	51	
139	The Pain of Sleep Loss: A Brain Characterization in Humans. <i>Journal of Neuroscience</i> , 2019 , 39, 2291-230	06.6	48	
138	Behavioural and neural evidence for self-reinforcing expectancy effects on pain. <i>Nature Human Behaviour</i> , 2018 , 2, 838-855	12.8	47	
137	Meta-analysis of neuroimaging data. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 293-300	4.5	46	
136	Sex differences in the emotional brain. <i>NeuroReport</i> , 2005 , 16, 85-7	1.7	46	
135	Acute neural effects of selective serotonin reuptake inhibitors versus noradrenaline reuptake inhibitors on emotion processing: Implications for differential treatment efficacy. <i>Neuroscience and Biobehavioral Reviews</i> , 2013 , 37, 1786-800	9	45	
134	The dynamics of pain: evidence for simultaneous site-specific habituation and site-nonspecific sensitization in thermal pain. <i>Journal of Pain</i> , 2014 , 15, 734-46	5.2	44	
133	Social anxiety is characterized by biased learning about performance and the self. <i>Emotion</i> , 2017 , 17, 1144-1155	4.1	42	
132	Meta Analysis of Functional Neuroimaging Data via Bayesian Spatial Point Processes. <i>Journal of the American Statistical Association</i> , 2011 , 106, 124-134	2.8	42	
131	Emotion schemas are embedded in the human visual system. <i>Science Advances</i> , 2019 , 5, eaaw4358	14.3	41	

130	Group-regularized individual prediction: theory and application to pain. <i>NeuroImage</i> , 2017 , 145, 274-28	77.9	40
129	Beyond conformity: Social influences on pain reports and physiology. <i>Emotion</i> , 2016 , 16, 24-32	4.1	40
128	Orbitofrontal cortex mediates pain inhibition by monetary reward. <i>Social Cognitive and Affective Neuroscience</i> , 2017 , 12, 651-661	4	39
127	Anticipatory brain activity predicts the success or failure of subsequent emotion regulation. <i>Social Cognitive and Affective Neuroscience</i> , 2014 , 9, 403-11	4	39
126	Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia. <i>NeuroImage</i> , 2015 , 108, 274-91	7.9	38
125	High-dimensional multivariate mediation with application to neuroimaging data. <i>Biostatistics</i> , 2018 , 19, 121-136	3.7	37
124	Neuroimaging-based biomarker discovery and validation. <i>Pain</i> , 2015 , 156, 1379-1381	8	36
123	Brain mechanisms of social touch-induced analgesia in females. <i>Pain</i> , 2019 , 160, 2072-2085	8	36
122	Effects of compassion meditation on a psychological model of charitable donation. <i>Emotion</i> , 2016 , 16, 691-705	4.1	35
121	A neuroimaging biomarker for sustained experimental and clinical pain. <i>Nature Medicine</i> , 2021 , 27, 174-	-1 82 5	35
121	A neuroimaging biomarker for sustained experimental and clinical pain. <i>Nature Medicine</i> , 2021 , 27, 174. Conceptual Conditioning: Mechanisms Mediating Conditioning Effects on Pain. <i>Psychological Science</i> , 2015 , 26, 1728-39	-1 82 .5	35
	Conceptual Conditioning: Mechanisms Mediating Conditioning Effects on Pain. <i>Psychological</i>		
120	Conceptual Conditioning: Mechanisms Mediating Conditioning Effects on Pain. <i>Psychological Science</i> , 2015 , 26, 1728-39 A Brain Phenotype for Stressor-Evoked Blood Pressure Reactivity. <i>Journal of the American Heart</i>	7.9	34
120 119	Conceptual Conditioning: Mechanisms Mediating Conditioning Effects on Pain. <i>Psychological Science</i> , 2015 , 26, 1728-39 A Brain Phenotype for Stressor-Evoked Blood Pressure Reactivity. <i>Journal of the American Heart Association</i> , 2017 , 6, Neuroimaging-based biomarkers for pain: state of the field and current directions. <i>Pain Reports</i> ,	7·9 6	34
120 119 118	Conceptual Conditioning: Mechanisms Mediating Conditioning Effects on Pain. <i>Psychological Science</i> , 2015 , 26, 1728-39 A Brain Phenotype for Stressor-Evoked Blood Pressure Reactivity. <i>Journal of the American Heart Association</i> , 2017 , 6, Neuroimaging-based biomarkers for pain: state of the field and current directions. <i>Pain Reports</i> , 2019 , 4, e751 Altered white matter microstructural organization in posttraumatic stress disorder across 3047	7·9 6 3·5	34 34 34
120 119 118	Conceptual Conditioning: Mechanisms Mediating Conditioning Effects on Pain. <i>Psychological Science</i> , 2015 , 26, 1728-39 A Brain Phenotype for Stressor-Evoked Blood Pressure Reactivity. <i>Journal of the American Heart Association</i> , 2017 , 6, Neuroimaging-based biomarkers for pain: state of the field and current directions. <i>Pain Reports</i> , 2019 , 4, e751 Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. <i>Molecular Psychiatry</i> , 2021 , 26, 4315-4330	7·9 6 3·5	34 34 34 33
120 119 118 117	Conceptual Conditioning: Mechanisms Mediating Conditioning Effects on Pain. <i>Psychological Science</i> , 2015 , 26, 1728-39 A Brain Phenotype for Stressor-Evoked Blood Pressure Reactivity. <i>Journal of the American Heart Association</i> , 2017 , 6, Neuroimaging-based biomarkers for pain: state of the field and current directions. <i>Pain Reports</i> , 2019 , 4, e751 Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. <i>Molecular Psychiatry</i> , 2021 , 26, 4315-4330 Socially transmitted placebo effects. <i>Nature Human Behaviour</i> , 2019 , 3, 1295-1305 Deconstructing arousal into wakeful, autonomic and affective varieties. <i>Neuroscience Letters</i> , 2019 ,	7·9 6 3·5 15.1	34 34 34 33 33

(2013-2014)

112	Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems. <i>Frontiers in Psychology</i> , 2014 , 5, 1580	3.4	30
111	Estimating and testing variance components in a multi-level GLM. <i>NeuroImage</i> , 2012 , 59, 490-501	7.9	30
110	Opposing effects of expectancy and somatic focus on pain. <i>PLoS ONE</i> , 2012 , 7, e38854	3.7	29
109	Exposure-based therapy changes amygdala and hippocampus resting-state functional connectivity in patients with posttraumatic stress disorder. <i>Depression and Anxiety</i> , 2018 , 35, 974-984	8.4	29
108	Let it be: mindful acceptance down-regulates pain and negative emotion. <i>Social Cognitive and Affective Neuroscience</i> , 2019 , 14, 1147-1158	4	27
107	Mechanisms of placebo analgesia: A dual-process model informed by insights from cross-species comparisons. <i>Progress in Neurobiology</i> , 2018 , 160, 101-122	10.9	27
106	Frontal-Brainstem Pathways Mediating Placebo Effects on Social Rejection. <i>Journal of Neuroscience</i> , 2017 , 37, 3621-3631	6.6	26
105	Toward a unified framework for interpreting machine-learning models in neuroimaging. <i>Nature Protocols</i> , 2020 , 15, 1399-1435	18.8	26
104	Specifying the non-specific factors underlying opioid analgesia: expectancy, attention, and affect. <i>Psychopharmacology</i> , 2014 , 231, 813-23	4.7	25
103	Conflict, error likelihood, and RT: Response to Brown & Yeung et al. <i>NeuroImage</i> , 2011 , 57, 320-2	7.9	25
102	False-positive neuroimaging: Undisclosed flexibility in testing spatial hypotheses allows presenting anything as a replicated finding. <i>NeuroImage</i> , 2019 , 195, 384-395	7.9	24
101	Characterization and reduction of cardiac- and respiratory-induced noise as a function of the sampling rate (TR) in fMRI. <i>NeuroImage</i> , 2014 , 89, 314-30	7.9	24
100	Feelings of Clinician-Patient Similarity and Trust Influence Pain: Evidence From Simulated Clinical Interactions. <i>Journal of Pain</i> , 2017 , 18, 787-799	5.2	23
99	Authors lesponse: what are emotions and how are they created in the brain?. <i>Behavioral and Brain Sciences</i> , 2012 , 35, 172-202	0.9	23
98	What reliability can and cannot tell us about pain report and pain neuroimaging. <i>Pain</i> , 2016 , 157, 511-5	138	23
97	Imaging biomarkers and biotypes for depression. <i>Nature Medicine</i> , 2017 , 23, 16-17	50.5	22
96	Touch and social support influence interpersonal synchrony and pain. <i>Social Cognitive and Affective Neuroscience</i> , 2020 , 15, 1064-1075	4	22
95	How Is Pain Influenced by Cognition? Neuroimaging Weighs In. <i>Perspectives on Psychological Science</i> , 2013 , 8, 91-7	9.8	22

94	Behavioral and Neural Signatures of Working Memory in Childhood. <i>Journal of Neuroscience</i> , 2020 , 40, 5090-5104	6.6	21
93	Effect Size and Power in fMRI Group Analysis		21
92	The self in context: brain systems linking mental and physical health. <i>Nature Reviews Neuroscience</i> , 2021 , 22, 309-322	13.5	21
91	Serotonin transporter polymorphism alters citalopram effects on human pain responses to physical pain. <i>NeuroImage</i> , 2016 , 135, 186-96	7.9	21
90	Multiple Brain Networks Mediating Stimulus-Pain Relationships in Humans. <i>Cerebral Cortex</i> , 2020 , 30, 4204-4219	5.1	20
89	A BAYESIAN HIERARCHICAL SPATIAL POINT PROCESS MODEL FOR MULTI-TYPE NEUROIMAGING META-ANALYSIS. <i>Annals of Applied Statistics</i> , 2014 , 8, 1800-1824	2.1	20
88	Influence of dorsolateral prefrontal cortex and ventral striatum on risk avoidance in addiction: a mediation analysis. <i>Drug and Alcohol Dependence</i> , 2015 , 149, 10-7	4.9	19
87	Patients with schizophrenia are impaired when learning in the context of pursuing rewards. <i>Schizophrenia Research</i> , 2014 , 152, 309-10	3.6	19
86	Placebo effects in the brain: linking mental and physiological processes. <i>Brain, Behavior, and Immunity</i> , 2005 , 19, 281-2	16.6	19
85	Large-scale Meta-analysis Suggests Low Regional Modularity in Lateral Frontal Cortex. <i>Cerebral Cortex</i> , 2018 , 28, 3414-3428	5.1	18
84	Age of gray matters: Neuroprediction of recidivism. <i>NeuroImage: Clinical</i> , 2018 , 19, 813-823	5.3	18
83	Empathic pain evoked by sensory and emotional-communicative cues share common and process-specific neural representations. <i>ELife</i> , 2020 , 9,	8.9	18
82	Pain-Evoked Reorganization in Functional Brain Networks. <i>Cerebral Cortex</i> , 2020 , 30, 2804-2822	5.1	18
81	Brain systems at the intersection of chronic pain and self-regulation. <i>Neuroscience Letters</i> , 2019 , 702, 24-33	3.3	18
80	Transforming Pain With Prosocial Meaning: A Functional Magnetic Resonance Imaging Study. <i>Psychosomatic Medicine</i> , 2018 , 80, 814-825	3.7	18
79	Neural and sociocultural mediators of ethnic differences in pain. <i>Nature Human Behaviour</i> , 2020 , 4, 517	- 5₁3:0 8	17
78	Cognitive and Motivational Functions of the Human Prefrontal Cortex 2009 , 30-61		17
77	Gender Biases in Estimation of Others' Pain. <i>Journal of Pain</i> , 2021 , 22, 1048-1059	5.2	17

76	A Generalizable Multivariate Brain Pattern for Interpersonal Guilt. Cerebral Cortex, 2020, 30, 3558-3572	5.1	15
75	Individual differences in multiple types of shifting attention. <i>Memory and Cognition</i> , 2006 , 34, 1730-43	2.2	15
74	fMRI can be highly reliable, but it depends on what you measure		15
73	Common and distinct neural representations of aversive somatic and visceral stimulation in healthy individuals. <i>Nature Communications</i> , 2020 , 11, 5939	17.4	15
72	Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence. <i>Neuropsychologia</i> , 2019 , 125, 93-108	3.2	15
71	Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data. <i>Biometrics</i> , 2018 , 74, 342-353	1.8	14
70	Generalization of learned pain modulation depends on explicit learning. <i>Acta Psychologica</i> , 2018 , 184, 75-84	1.7	14
69	Human and Mouse Transcriptome Profiling Identifies Cross-Species Homology in Pulmonary and Lymph Node Mononuclear Phagocytes. <i>Cell Reports</i> , 2020 , 33, 108337	10.6	14
68	Multiple faces of pain: effects of chronic pain on the brain regulation of facial expression. <i>Pain</i> , 2016 , 157, 1819-1830	8	13
67	The neural bases of distracter-resistant working memory. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2014 , 14, 90-105	3.5	13
66	Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data. <i>Nature Communications</i> , 2021 , 12, 1391	17.4	13
65	Brain and psychological mediators of imitation: sociocultural versus physical traits. <i>Culture and Brain</i> , 2015 , 3, 93-111	1.1	11
64	Brain Predictors of Individual Differences in Placebo Responding 2013 , 89-102		11
63	Placebos without deception reduce self-report and neural measures of emotional distress. <i>Nature Communications</i> , 2020 , 11, 3785	17.4	11
62	Functional Involvement of Human Periaqueductal Gray and Other Midbrain Nuclei in Cognitive Control. <i>Journal of Neuroscience</i> , 2019 , 39, 6180-6189	6.6	10
61	Prevention of Stress-Provoked Endothelial Injury by Values Affirmation: a Proof of Principle Study. <i>Annals of Behavioral Medicine</i> , 2016 , 50, 471-9	4.5	10
60	Neural and genetic markers of vulnerability to post-traumatic stress symptoms among survivors of the World Trade Center attacks. <i>Social Cognitive and Affective Neuroscience</i> , 2015 , 10, 863-8	4	10
59	Improving Practices for Selecting a Subset of Important Predictors in Psychology: An Application to Predicting Pain. <i>Advances in Methods and Practices in Psychological Science</i> , 2020 , 3, 66-80	13.3	9

58	Partial Amelioration of Medial Visceromotor Network Dysfunction in Major Depression by Sertraline. <i>Psychosomatic Medicine</i> , 2015 , 77, 752-61	3.7	9
57	When pain really matters: A vicarious-pain brain marker tracks empathy for pain in the romantic partner. <i>Neuropsychologia</i> , 2020 , 145, 106427	3.2	9
56	Distinct fMRI patterns colocalized in the cingulate cortex underlie the after-effects of cognitive control on pain. <i>NeuroImage</i> , 2020 , 217, 116898	7.9	8
55	Evidence for decreased Neurologic Pain Signature activation following thoracic spinal manipulation in healthy volunteers and participants with neck pain. <i>NeuroImage: Clinical</i> , 2019 , 24, 102042	5.3	8
54	Interactions between donor Agreeableness and recipient characteristics in predicting charitable donation and positive social evaluation. <i>PeerJ</i> , 2015 , 3, e1089	3.1	8
53	A human colliculus-pulvinar-amygdala pathway encodes negative emotion. <i>Neuron</i> , 2021 , 109, 2404-241	12. 2 .5	8
52	Bayesian log-Gaussian Cox process regression: with applications to meta-analysis of neuroimaging working memory studies. <i>Journal of the Royal Statistical Society Series C: Applied Statistics</i> , 2019 , 68, 217	² -234	7
51	Inferring pain experience in infants using quantitative whole-brain functional MRI signatures: a cross-sectional, observational study. <i>The Lancet Digital Health</i> , 2020 , 2, e458-e467	14.4	7
50	Neural mechanisms of expectancy-based placebo effects in antidepressant clinical trials. <i>Journal of Psychiatric Research</i> , 2019 , 116, 19-25	5.2	5
49	fMRI in analgesic drug discovery. <i>Science Translational Medicine</i> , 2015 , 7, 274fs6	17.5	5
48	Clinician-Patient Movement Synchrony Mediates Social Group Effects on Interpersonal Trust and Perceived Pain. <i>Journal of Pain</i> , 2020 , 21, 1160-1174	5.2	5
47	Issues in Pain Prediction - More Gain than Pain. <i>Trends in Neurosciences</i> , 2016 , 39, 639-640	13.3	5
46	Effect of Pain Reprocessing Therapy vs Placebo and Usual Care for Patients With Chronic Back Pain: A Randomized Clinical Trial. <i>JAMA Psychiatry</i> , 2021 ,	14.5	5
45	Imaging Brain Mechanisms of Functional Somatic Syndromes: Potential as a Biomarker?. <i>Tohoku Journal of Experimental Medicine</i> , 2020 , 250, 137-152	2.4	4
44	The challenges of forecasting resilience. <i>Behavioral and Brain Sciences</i> , 2015 , 38, e98	0.9	4
43	Establishing homology between monkey and human brains. <i>Nature Methods</i> , 2012 , 9, 237-9	21.6	4
42	Placebo Effects 2009 ,		4
41	Emerging Clinical Technology: Application of Machine Learning to Chronic Pain Assessments Based on Emotional Body Maps. <i>Neurotherapeutics</i> , 2020 , 17, 774-783	6.4	4

(2020-2019)

40	Cognitive self-regulation influences pain-related physiology. <i>Pain</i> , 2019 , 160, 2338-2349	8	4
39	Disentangling opposing effects of motivational states on pain perception. Pain Reports, 2016, 1,	3.5	3
38	Expectancies and Beliefs 2013,		3
37	A distributed fMRI-based signature for the subjective experience of fear. <i>Nature Communications</i> , 2021 , 12, 6643	17.4	3
36	Redefining innate natural antibodies as important contributors to anti-tumor immunity. <i>ELife</i> , 2021 , 10,	8.9	3
35	Investigating the specificity of the neurologic pain signature against breathlessness and finger opposition. <i>Pain</i> , 2021 , 162, 2933-2944	8	3
34	Fundamentals of Functional Neuroimaging41-73		3
33	Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats. <i>ELife</i> , 2021 , 10,	8.9	3
32	The conceptual building blocks of everyday thought: Tracking the emergence and dynamics of ruminative and nonruminative thinking. <i>Journal of Experimental Psychology: General</i> , 2021 ,	4.7	3
31	Essentials of Functional Neuroimaging 2009,		2
30	Introduction to Mools of the Trade Social Cognitive and Affective Neuroscience, 2006, 1, 72-72	4	2
29	Neural mediators of subjective and autonomic responding during threat learning and regulation. <i>Neurolmage</i> , 2021 , 245, 118643	7.9	2
28	A generalizable multivariate brain pattern for interpersonal guilt		2
27	Emotion Schemas are Embedded in the Human Visual System		2
26	Effects of compassion training on brain responses to suffering others		2
25	When it hurts even more: The neural dynamics of pain and interpersonal emotions. <i>Journal of Psychosomatic Research</i> , 2020 , 128, 109881	4.1	2
24	The Neural Correlates of Cued Reward Omission. Frontiers in Human Neuroscience, 2021, 15, 615313	3.3	2
23	Toward a Brain-Based Bio-Marker of Guilt. <i>Neuroscience Insights</i> , 2020 , 15, 2633105520957638	3	1

22	Effect sizes and test-retest reliability of the fMRI-based neurologic pain signature <i>NeuroImage</i> , 2021 , 247, 118844	7.9	1
21	False-positive neuroimaging: Undisclosed flexibility in testing spatial hypotheses allows presenting anything as a replicated finding		1
20	Inferring the infant pain experience: a translational fMRI-based signature study		1
19	Pain and breathlessness: Salient, somatosensory and similar, but not the same		1
18	Painometry 2020 ,		1
17	Emotional contagion of pain across different social cues shares common and process-specific neural representations		1
16	Evoked pain intensity representation is distributed across brain systems: A multistudy mega-analysis		1
15	Beyond fear centers - a distributed fMRI-based neuromarker for the subjective experience of fear		1
14	Multiple brain networks mediating stimulus-pain relationships in humans		1
13	Inferring the Genetic Influences on Psychological Traits Using MRI Connectivity Predictive Models: Demonstration with Cognition		1
12	Effect sizes and test-retest reliability of the fMRI-based Neurologic Pain Signature		1
11	Brain markers predicting response to cognitive-behavioral therapy for social anxiety disorder: an independent replication of Whitfield-Gabrieli et al. 2015. <i>Translational Psychiatry</i> , 2021 , 11, 260	8.6	1
10	Affective neural signatures do not distinguish women with emotion dysregulation from healthy controls: A mega-analysis across three task-based fMRI studies		1
9	Novel Cognitive Functions Arise at the Convergence of Macroscale Gradients <i>Journal of Cognitive Neuroscience</i> , 2021 , 1-16	3.1	O
8	Effects of compassion training on brain responses to suffering others. <i>Social Cognitive and Affective Neuroscience</i> , 2021 , 16, 1036-1047	4	O
7	The neurologic pain signature responds to nonsteroidal anti-inflammatory treatment vs placebo in knee osteoarthritis <i>Pain Reports</i> , 2022 , 7, e986	3.5	O
6	Test-retest reliability of an adaptive thermal pain calibration procedure in healthy volunteers Journal of Pain, 2022 , 4077	5.2	0
5	Multi-Site Observational Study to Assess Biomarkers for Susceptibility or Resilience to Chronic Pain: The Acute to Chronic Pain Signatures (A2CPS) Study Protocol <i>Frontiers in Medicine</i> , 2022 , 9, 849214	4.9	O

LIST OF PUBLICATIONS

4	A multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems <i>PLoS Biology</i> , 2022 , 20, e3001620	9.7	O
3	Reply. <i>Pain</i> , 2016 , 157, 1576-1577	8	
2	Laterality and Stimulation Bias in Meta-analysis of Placebo Responses-Reply. <i>JAMA Neurology</i> , 2019 , 76, 870	17.2	
1	Reproducible, Generalizable Brain Models of Affective Processes. <i>Nebraska Symposium on Motivation</i> , 2019 , 221-263	0.6	