Maxim Bazhenov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3322687/publications.pdf

Version: 2024-02-01

84 papers

4,416 citations

32 h-index 60 g-index

93 all docs 93 docs citations

93 times ranked 3805 citing authors

#	Article	IF	CITATIONS
1	Novelty detection in early olfactory processing of the honey bee, Apis mellifera. PLoS ONE, 2022, 17, e0265009.	1.1	10
2	Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, 2022, 4, 196-210.	8.3	62
3	Replay in Deep Learning: Current Approaches and Missing Biological Elements. Neural Computation, 2021, 33, 1-44.	1.3	32
4	A computational study of suppression of sharp wave ripple complexes by controlling calcium and gap junctions in pyramidal cells. Bioengineered, 2021, 12, 2603-2615.	1.4	2
5	Bidirectional Interaction of Hippocampal Ripples and Cortical Slow Waves Leads to Coordinated Spiking Activity During NREM Sleep. Cerebral Cortex, 2021, 31, 324-340.	1.6	20
6	Stimulation Augments Spike Sequence Replay and Memory Consolidation during Slow-Wave Sleep. Journal of Neuroscience, 2020, 40, 811-824.	1.7	27
7	Differential Covariance: A New Method to Estimate Functional Connectivity in fMRI. Neural Computation, 2020, 32, 2389-2421.	1.3	4
8	<scp>NMDA</scp> receptors promote hippocampal sharpâ€wave ripples and the associated coactivity of <scp>CA1</scp> pyramidal cells. Hippocampus, 2020, 30, 1356-1370.	0.9	6
9	Optimality of sparse olfactory representations is not affected by network plasticity. PLoS Computational Biology, 2020, 16, e1007461.	1.5	13
10	Can sleep protect memories from catastrophic forgetting?. ELife, 2020, 9, .	2.8	31
11	Selective recruitment of cortical neurons by electrical stimulation. PLoS Computational Biology, 2019, 15, e1007277.	1.5	20
12	Large time step discrete-time modeling of sharp wave activity in hippocampal area CA3. Communications in Nonlinear Science and Numerical Simulation, 2019, 72, 162-175.	1.7	4
13	lonic and synaptic mechanisms of seizure generation and epileptogenesis. Neurobiology of Disease, 2019, 130, 104485.	2.1	28
14	Coupling of autonomic and central events during sleep benefits declarative memory consolidation. Neurobiology of Learning and Memory, 2019, 157, 139-150.	1.0	29
15	Simulating human sleep spindle MEG and EEG from ion channel and circuit level dynamics. Journal of Neuroscience Methods, 2019, 316, 46-57.	1.3	5
16	Circuit mechanisms of hippocampal reactivation during sleep. Neurobiology of Learning and Memory, 2019, 160, 98-107.	1.0	22
17	New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. Journal of Computational Neuroscience, 2018, 44, 1-24.	0.6	17
18	Structured networks support sparse traveling waves in rodent somatosensory cortex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5277-5282.	3.3	18

#	Article	IF	CITATIONS
19	Role of KCC2-dependent potassium efflux in 4-Aminopyridine-induced Epileptiform synchronization. Neurobiology of Disease, 2018, 109, 137-147.	2.1	25
20	Characterizing Concentration-Dependent Neural Dynamics of 4-Aminopyridine-Induced Epileptiform Activity. Epilepsy Journal, 2018, 04, .	0.1	4
21	Differential effects of adaptation on odor discrimination. Journal of Neurophysiology, 2018, 120, 171-185.	0.9	9
22	Thalamocortical and intracortical laminar connectivity determines sleep spindle properties. PLoS Computational Biology, 2018, 14, e1006171.	1.5	23
23	Differential roles of sleep spindles and sleep slow oscillations in memory consolidation. PLoS Computational Biology, 2018, 14, e1006322.	1.5	56
24	Computational model of brain-stem circuit for state-dependent control of hypoglossal motoneurons. Journal of Neurophysiology, 2018, 120, 296-305.	0.9	4
25	Origin of slow spontaneous resting-state neuronal fluctuations in brain networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6858-6863.	3.3	56
26	The complex ecosystem in non small cell lung cancer invasion. PLoS Computational Biology, 2018, 14, e1006131.	1.5	7
27	Learning-Induced Sequence Reactivation During Sharp-Wave Ripples: A Computational Study. Association for Women in Mathematics Series, 2018, , 173-204.	0.1	2
28	Adenosine Shifts Plasticity Regimes between Associative and Homeostatic by Modulating Heterosynaptic Changes. Journal of Neuroscience, 2017, 37, 1439-1452.	1.7	20
29	Differential Covariance: A New Class of Methods to Estimate Sparse Connectivity from Neural Recordings. Neural Computation, 2017, 29, 2581-2632.	1.3	13
30	Using Biophysical Models to Understand the Effect of tDCS on Neurorehabilitation: Searching for Optimal Covariates to Enhance Poststroke Recovery. Frontiers in Neurology, 2017, 8, 58.	1.1	7
31	Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task. PLoS Computational Biology, 2017, 13, e1005705.	1.5	13
32	Delayed onset of symptoms through feedback interference in chronic cancers. Convergent Science Physical Oncology, 2016, 2, 045002.	2.6	2
33	Classification of odorants across layers in locust olfactory pathway. Journal of Neurophysiology, 2016, 115, 2303-2316.	0.9	14
34	Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations. Journal of Neuroscience, 2016, 36, 4231-4247.	1.7	83
35	Linking dynamics of the inhibitory network to the input structure. Journal of Computational Neuroscience, 2016, 41, 367-391.	0.6	4
36	Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning. Journal of Neuroscience, 2016, 36, 8842-8855.	1.7	26

#	Article	IF	CITATIONS
37	Hippocampal CA1 Ripples as Inhibitory Transients. PLoS Computational Biology, 2016, 12, e1004880.	1.5	47
38	Cellular and neurochemical basis of sleep stages in the thalamocortical network. ELife, 2016, 5, .	2.8	73
39	Homeostatic role of heterosynaptic plasticity: models and experiments. Frontiers in Computational Neuroscience, 2015, 9, 89.	1.2	78
40	Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit. PLoS Computational Biology, 2015, 11, e1004531.	1.5	34
41	Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling. Journal of Neuroscience, 2015, 35, 13448-13462.	1.7	25
42	Feedback stabilizes propagation of synchronous spiking in cortical neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2545-2550.	3.3	39
43	Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components. Journal of Neuroscience, 2015, 35, 179-197.	1.7	35
44	Electrogenic properties of the Na ⁺ /K ⁺ ATPase control transitions between normal and pathological brain states. Journal of Neurophysiology, 2015, 113, 3356-3374.	0.9	60
45	Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans. PLoS ONE, 2015, 10, e0144720.	1.1	113
46	Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling. PLoS Computational Biology, 2014, 10, e1003855.	1.5	25
47	Top-Down Inputs Enhance Orientation Selectivity in Neurons of the Primary Visual Cortex during Perceptual Learning. PLoS Computational Biology, 2014, 10, e1003770.	1.5	18
48	Heterosynaptic Plasticity. Neuroscientist, 2014, 20, 483-498.	2.6	125
49	The Impact of Cortical Deafferentation on the Neocortical Slow Oscillation. Journal of Neuroscience, 2014, 34, 5689-5703.	1.7	151
50	A Spiking Network Model of Decision Making Employing Rewarded STDP. PLoS ONE, 2014, 9, e90821.	1.1	22
51	Network Models of Frequency Modulated Sweep Detection. PLoS ONE, 2014, 9, e115196.	1.1	4
52	Heterosynaptic Plasticity Prevents Runaway Synaptic Dynamics. Journal of Neuroscience, 2013, 33, 15915-15929.	1.7	69
53	A Computational Framework for Understanding Decision Making through Integration of Basic Learning Rules. Journal of Neuroscience, 2013, 33, 5686-5697.	1.7	59
54	Divide and Conquer: Functional Segregation of Synaptic Inputs by Astrocytic Microdomains Could Alleviate Paroxysmal Activity Following Brain Trauma. PLoS Computational Biology, 2013, 9, e1002856.	1.5	14

#	Article	IF	Citations
55	Age dependency of trauma-induced neocortical epileptogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 154.	1.8	17
56	Interactions between Core and Matrix Thalamocortical Projections in Human Sleep Spindle Synchronization. Journal of Neuroscience, 2012, 32, 5250-5263.	1.7	89
57	Excitatory Local Interneurons Enhance Tuning of Sensory Information. PLoS Computational Biology, 2012, 8, e1002563.	1.5	21
58	Computational models of neuron-astrocyte interaction in epilepsy. Frontiers in Computational Neuroscience, 2012, 6, 58.	1.2	76
59	Synaptic inhibition controls transient oscillatory synchronization in a model of the insect olfactory system. Frontiers in Neuroengineering, 2012, 5, 7.	4.8	13
60	Interneuronâ€mediated inhibition synchronizes neuronal activity during slow oscillation. Journal of Physiology, 2012, 590, 3987-4010.	1.3	83
61	Using the Structure of Inhibitory Networks to Unravel Mechanisms of Spatiotemporal Patterning. Neuron, 2011, 69, 373-386.	3.8	41
62	Topological basis of epileptogenesis in a model of severe cortical trauma. Journal of Neurophysiology, 2011, 106, 1933-1942.	0.9	27
63	Non-homogeneous extracellular resistivity affects the current-source density profiles of up–down state oscillations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3802-3819.	1.6	32
64	Dynamics of epileptiform activity in mouse hippocampal slices. Journal of Biological Physics, 2011, 37, 347-360.	0.7	12
65	lonic Dynamics Mediate Spontaneous Termination of Seizures and Postictal Depression State. Journal of Neuroscience, 2011, 31, 8870-8882.	1.7	154
66	Corticothalamic Feedback Controls Sleep Spindle Duration In Vivo. Journal of Neuroscience, 2011, 31, 9124-9134.	1.7	167
67	Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15402-15407.	3.3	32
68	Network Bistability Mediates Spontaneous Transitions between Normal and Pathological Brain States. Journal of Neuroscience, 2010, 30, 10734-10743.	1.7	104
69	Forward and Back: Motifs of Inhibition in Olfactory Processing. Neuron, 2010, 67, 357-358.	3.8	18
70	Oscillations and Synchrony in Large-scale Cortical Network Models. Journal of Biological Physics, 2008, 34, 279-299.	0.7	34
71	Pathological Effect of Homeostatic Synaptic Scaling on Network Dynamics in Diseases of the Cortex. Journal of Neuroscience, 2008, 28, 1709-1720.	1.7	83
72	Potassium Dynamics in the Epileptic Cortex: New Insights on an Old Topic. Neuroscientist, 2008, 14, 422-433.	2.6	167

#	Article	IF	CITATIONS
7 3	Adaptive regulation of sparseness by feedforward inhibition. Nature Neuroscience, 2007, 10, 1176-1184.	7.1	92
74	Coexistence of tonic firing and bursting in cortical neurons. Physical Review E, 2006, 74, 031922.	0.8	98
75	Slow State Transitions of Sustained Neural Oscillations by Activity-Dependent Modulation of Intrinsic Excitability. Journal of Neuroscience, 2006, 26, 6153-6162.	1.7	91
76	Homeostatic Synaptic Plasticity Can Explain Post-traumatic Epileptogenesis in Chronically Isolated Neocortex. Cerebral Cortex, 2005, 15, 834-845.	1.6	155
77	Fast Odor Learning Improves Reliability of Odor Responses in the Locust Antennal Lobe. Neuron, 2005, 46, 483-492.	3 . 8	84
78	Role of network dynamics in shaping spike timing reliability. Physical Review E, 2005, 72, 041903.	0.8	32
79	Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9533-9537.	3.3	85
80	Model of Thalamocortical Slow-Wave Sleep Oscillations and Transitions to Activated States. Journal of Neuroscience, 2002, 22, 8691-8704.	1.7	428
81	Model of Cellular and Network Mechanisms for Odor-Evoked Temporal Patterning in the Locust Antennal Lobe. Neuron, 2001, 30, 569-581.	3.8	137
82	Model of Transient Oscillatory Synchronization in the Locust Antennal Lobe. Neuron, 2001, 30, 553-567.	3.8	219
83	Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons. Physical Review E, 1998, 58, 6418-6430.	0.8	13
84	Cellular and Network Models for Intrathalamic Augmenting Responses During 10-Hz Stimulation. Journal of Neurophysiology, 1998, 79, 2730-2748.	0.9	91