List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3322492/publications.pdf Version: 2024-02-01

		117625	149698
128	4,116	34	56
papers	citations	h-index	g-index
135	135	135	3843
all docs	docs citations	times ranked	citing authors

Δνινά Μεταγάς

#	Article	IF	CITATIONS
1	Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence. Frontiers in Marine Science, 2016, 3, .	2.5	294
2	Environmental Impacts of the Deep-Water Oil and Gas Industry: A Review to Guide Management Strategies. Frontiers in Environmental Science, 2016, 4, .	3.3	236
3	Quantifying the "Bio-―Components in Biophysical Models of Larval Transport in Marine Benthic Invertebrates: Advances and Pitfalls. Biological Bulletin, 2009, 216, 257-272.	1.8	164
4	Scientific rationale and international obligations for protection of active hydrothermal vent ecosystems from deep-sea mining. Marine Policy, 2018, 90, 20-28.	3.2	134
5	Behaviour in flow: perspectives on the distribution and dispersion of meroplanktonic larvae in the water column. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 86-98.	1.4	130
6	Estimating dispersal distance in the deep sea: challenges and applications to marine reserves. Frontiers in Marine Science, 2015, 2, .	2.5	127
7	The current application of ecological connectivity in the design of marine protected areas. Global Ecology and Conservation, 2019, 17, e00569.	2.1	109
8	Embryology of vestimentiferan tube worms from deep-sea methane/sulphide seeps. Nature, 1996, 381, 514-516.	27.8	108
9	Predicting suitable habitat for deep-water gorgonian corals on the Atlantic and Pacific Continental Margins of North America. Marine Ecology - Progress Series, 2007, 330, 113-126.	1.9	104
10	Promoting inclusive metrics of success and impact to dismantle a discriminatory reward system in science. PLoS Biology, 2021, 19, e3001282.	5.6	98
11	Vertical, lateral and temporal structure in larval distributions at hydrothermal vents. Marine Ecology - Progress Series, 2005, 293, 1-16.	1.9	86
12	Exploring the Ecology of Deep-Sea Hydrothermal Vents in a Metacommunity Framework. Frontiers in Marine Science, 2018, 5, .	2.5	79
13	Biophysical and Population Genetic Models Predict the Presence of "Phantom―Stepping Stones Connecting Mid-Atlantic Ridge Vent Ecosystems. Current Biology, 2016, 26, 2257-2267.	3.9	69
14	Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods in Ecology and Evolution, 2020, 11, 570-579.	5.2	69
15	Deep-Sea Misconceptions Cause Underestimation of Seabed-Mining Impacts. Trends in Ecology and Evolution, 2020, 35, 853-857.	8.7	68
16	Assessment of scientific gaps related to the effective environmental management of deep-seabed mining. Marine Policy, 2022, 138, 105006.	3.2	67
17	Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Marine Ecology - Progress Series, 2015, 537, 89-104.	1.9	66
18	High recruitment of the introduced bryozoan Membranipora membranacea is associated with kelp bed defoliation in Nova Scotia, Canada. Marine Ecology - Progress Series, 2008, 369, 139-151.	1.9	62

#	Article	IF	CITATIONS
19	Past and Future Grand Challenges in Marine Ecosystem Ecology. Frontiers in Marine Science, 2020, 7, .	2.5	52
20	Relative importance of parental and larval nutrition on larval development and metamorphosis of the sea urchin Strongylocentrotus droebachiensis. Journal of Experimental Marine Biology and Ecology, 1999, 240, 161-178.	1.5	51
21	Spatial and temporal patterns in larval supply at hydrothermal vents in the northeast Pacific Ocean. Limnology and Oceanography, 2004, 49, 1949-1956.	3.1	48
22	Distribution of deep-water corals along the North American continental margins: Relationships with environmental factors. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1865-1879.	1.4	48
23	Latitudinal, seasonal and depth-dependent variation in growth, chemical composition and biofouling of cultivated Saccharina latissima (Phaeophyceae) along the Norwegian coast. Journal of Applied Phycology, 2020, 32, 2215-2232.	2.8	47
24	Interactive effects of haloclines and food patches on the vertical distribution of 3 species of temperate invertebrate larvae. Journal of Experimental Marine Biology and Ecology, 2008, 367, 131-141.	1.5	44
25	Applying Movement Ecology to Marine Animals with Complex Life Cycles. Annual Review of Marine Science, 2018, 10, 19-42.	11.6	43
26	A decade to study deep-sea life. Nature Ecology and Evolution, 2021, 5, 265-267.	7.8	43
27	Temperature explains settlement patterns of the introduced bryozoan Membranipora membranacea in Nova Scotia, Canada. Marine Ecology - Progress Series, 2007, 344, 95-106.	1.9	43
28	Patterns in abundance and size of two deep-water gorgonian octocorals, in relation to depth and substrate features off Nova Scotia. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 2235-2248.	1.4	42
29	A primer for use of genetic tools in selecting and testing the suitability of set-aside sites protected from deep-sea seafloor massive sulfide mining activities. Ocean and Coastal Management, 2016, 122, 37-48.	4.4	42
30	Early Life History of Deep-Water Gorgonian Corals May Limit Their Abundance. PLoS ONE, 2013, 8, e65394.	2.5	42
31	Spatial and temporal patterns of colonization by deep-sea hydrothermal vent invertebrates on the Juan de Fuca Ridge, NE Pacific. Aquatic Biology, 2007, 1, 1-16.	1.4	40
32	Annual and seasonal dynamics of deep-sea megafaunal epibenthic communities in Barkley Canyon (British Columbia, Canada): A response to climatology, surface productivity and benthic boundary layer variation. Progress in Oceanography, 2018, 169, 89-105.	3.2	39
33	Testing biological control of colonization by vestimentiferan tubeworms at deep-sea hydrothermal vents (East Pacific Rise, 9°50′N). Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 225-234.	1.4	38
34	Effects of temperature, size, and food on the growth of Membranipora membranacea in laboratory and field studies. Marine Biology, 2009, 156, 2267-2276.	1.5	38
35	Estimating fertilization success in marine benthic invertebrates: a case study with the tropical sea star Oreaster reticulatus. Marine Ecology - Progress Series, 2002, 226, 87-101.	1.9	38
36	Dense beds of the ophiuroid Ophiacantha abyssicola on the continental slope off Nova Scotia, Canada. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 1307-1317.	1.4	36

#	Article	IF	CITATIONS
37	Megafauna associated with assemblages of deep-water gorgonian corals in Northeast Channel, off Nova Scotia, Canada. Journal of the Marine Biological Association of the United Kingdom, 2005, 85, 1381-1390.	0.8	36
38	Dispersal potential of the invasive green alga Codium fragile ssp. fragile. Journal of Experimental Marine Biology and Ecology, 2009, 381, 114-125.	1.5	35
39	In situ growth rates of deep-water octocorals determined from 3D photogrammetric reconstructions. Coral Reefs, 2016, 35, 1227-1239.	2.2	35
40	The effect of the quality of food patches on larval vertical distribution of the sea urchins Lytechinus variegatus (Lamarck) and Strongylocentrotus droebachiensis (Mueller). Journal of Experimental Marine Biology and Ecology, 2004, 308, 221-236.	1.5	33
41	Vertical distribution of marine invertebrate larvae in response to thermal stratification in the laboratory. Journal of Experimental Marine Biology and Ecology, 2011, 409, 89-98.	1.5	33
42	Response of invertebrate larvae to the presence of the ctenophore Bolinopsis infundibulum, a potential predator. Journal of Experimental Marine Biology and Ecology, 2006, 334, 187-195.	1.5	31
43	Can Salinity-Induced Mortality Explain Larval Vertical Distribution With Respect to a Halocline?. Biological Bulletin, 2008, 214, 329-338.	1.8	30
44	Canada at a crossroad: The imperative for realigning ocean policy with ocean science. Marine Policy, 2016, 63, 53-60.	3.2	28
45	The effect of salinity on larval survival and development in the sea urchin <i>Echinometra lucunter</i> . Invertebrate Reproduction and Development, 1998, 34, 323-330.	0.8	27
46	Implications of warming temperatures for population outbreaks of a nonindigenous species (<i>Membranipora membranacea</i> , Bryozoa) in rocky subtidal ecosystems. Limnology and Oceanography, 2010, 55, 1627-1642.	3.1	27
47	Hard substrate in the deep ocean: How sediment features influence epibenthic megafauna on the eastern Canadian margin. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 126, 50-61.	1.4	27
48	Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems. PLoS Biology, 2017, 15, e2001886.	5.6	27
49	A global horizon scan of issues impacting marine and coastal biodiversity conservation. Nature Ecology and Evolution, 2022, 6, 1262-1270.	7.8	27
50	Swimming patterns of larval Strongylocentrotus droebachiensis in turbulence in the laboratory. Marine Ecology - Progress Series, 2012, 453, 117-127.	1.9	26
51	Benthic community succession on artificial and natural coral reefs in the northern Gulf of Aqaba, Red Sea. PLoS ONE, 2019, 14, e0212842.	2.5	25
52	Strategic Environmental Goals and Objectives: Setting the basis for environmental regulation of deep seabed mining. Marine Policy, 2020, 114, 103347.	3.2	25
53	Spatial patterns of larval abundance at hydrothermal vents on seamounts: evidence forÂrecruitment limitation. Marine Ecology - Progress Series, 2011, 437, 103-117.	1.9	24
54	Kelp in hot water: II. Effects of warming seawater temperature on kelp quality as a food source and settlement substrate. Marine Ecology - Progress Series, 2015, 537, 105-119.	1.9	24

#	Article	IF	CITATIONS
55	Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific. Marine Biology, 2007, 151, 649-662.	1.5	23
56	A Comparison of Predation Rates by Non-indigenous and Indigenous Crabs (Juvenile Carcinus maenas,) Tj ETQqO and Coasts, 2008, 31, 728-737.	0 0 rgBT / 2.2	Overlock 10 23
57	A systematic review of artificial reefs as platforms for coral reef research and conservation. PLoS ONE, 2022, 17, e0261964.	2.5	23
58	Concentrations of total dissolved copper in and near a copper-treated salmon net pen. Aquaculture, 1991, 99, 269-276.	3.5	22
59	The relative effect of behaviour in larval dispersal in a low energy embayment. Progress in Oceanography, 2016, 144, 93-117.	3.2	20
60	Contrasting patterns of spread in interacting invasive species: Membranipora membranacea and Codium fragile off Nova Scotia. Biological Invasions, 2010, 12, 2329-2342.	2.4	19
61	Effectiveness of a deep-water coral conservation area: Evaluation of its boundaries and changes in octocoral communities over 13 years. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 137, 420-435.	1.4	19
62	Contextualizing ecological performance: Rethinking monitoring in marine protected areas. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 2004-2011.	2.0	19
63	Population dynamics of a nonindigenous epiphytic bryozoan Membranipora membranacea in the western North Atlantic: effects of kelp substrate. Aquatic Biology, 2009, 8, 83-94.	1.4	19
64	Salinity tolerance in the early larval stages of Carcinus maenas (Decapoda, Brachyura), a recent invader of the Bras d'Or lakes, Nova Scotia, Canada. Crustaceana, 2007, 80, 475-490.	0.3	18
65	Interactions between an invasive and a native bryozoan (Membranipora membranacea and Electra) Tj ETQq1 1 0.	784314 r 1.5	gBT/Overloc
66	A decision tree that can address connectivity in the design of Marine Protected Area Networks (MPAn). Marine Policy, 2018, 88, 269-278.	3.2	18
67	Diversity of invertebrate colonists on simple and complex substrates at hydrothermal vents on the Juan de Fuca Ridge. Aquatic Biology, 2008, 3, 271-281.	1.4	18
68	Patterns in vertical distribution and their potential effects on transport of larval benthic invertebrates in a shallow embayment. Marine Ecology - Progress Series, 2012, 469, 37-52.	1.9	18
69	Invasive green crab, Carcinus maenas, on the Atlantic coast and in the Bras d'Or Lakes of Nova Scotia, Canada: larval supply and recruitment. Journal of the Marine Biological Association of the United Kingdom, 2005, 85, 847-855.	0.8	16
70	Predation of larval benthic invertebrates in St George's Bay, Nova Scotia. Journal of the Marine Biological Association of the United Kingdom, 2013, 93, 591-599.	0.8	16
71	Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems. PLoS ONE, 2010, 5, e13832.	2.5	16
72	Copper tolerance of Skeletonema costa and Nitzschia thermalis. Aquatic Toxicology, 1991, 19, 265-280.	4.0	15

#	Article	IF	CITATIONS
73	Population structure of two deep-sea hydrothermal vent gastropods from the Juan de Fuca Ridge, NE Pacific. Marine Biology, 2008, 153, 457-471.	1.5	15
74	The effect of flow on larval vertical distribution of the sea urchin, Strongylocentrotus droebachiensis. Journal of Experimental Marine Biology and Ecology, 2010, 383, 156-163.	1.5	15
75	Heading to the deep end without knowing how to swim: Do we need deep-seabed mining?. One Earth, 2022, 5, 220-223.	6.8	13
76	Comparing the Performance of a Remotely Operated Vehicle, a Drop Camera, and a Trawl in Capturing Deep-Sea Epifaunal Abundance and Diversity. Frontiers in Marine Science, 2021, 8, .	2.5	12
77	Do Larval Supply and Recruitment Vary among Chemosynthetic Environments of the Deep Sea?. PLoS ONE, 2010, 5, e11646.	2.5	12
78	Influence of an oxygen minimum zone and macroalgal enrichment on benthic megafaunal community composition in a <scp>NE</scp> Pacific submarine canyon. Marine Ecology, 2017, 38, e12481.	1.1	11
79	Community composition influences the population growth and ecological impact of invasive species in response to climate change. Oecologia, 2019, 189, 537-548.	2.0	11
80	Relative importance of kelps and fucoids as substrata of the invasive epiphytic bryozoan Membranipora membranacea in Nova Scotia, Canada. Aquatic Biology, 2012, 16, 17-30.	1.4	11
81	Selective settlement by larvae of Membranipora membranacea and Electra pilosa (Ectoprocta) along kelp blades in Nova Scotia, Canada. Aquatic Biology, 2014, 21, 47-56.	1.4	11
82	Physical forcing of distributions of bryozoan cyphonautes larvae in a coastal embayment. Marine Ecology - Progress Series, 2010, 418, 131-145.	1.9	11
83	Effects of juvenile non-indigenous Carcinus maenas on the growth and condition of juvenile Cancer irroratus. Journal of Experimental Marine Biology and Ecology, 2009, 377, 12-19.	1.5	10
84	Canadian Healthy Oceans Network (CHONe): An Academic–Government Partnership to Develop Scientific Guidelines for Conservation and Sustainable Usage of Marine Biodiversity. Fisheries, 2012, 37, 296-304.	0.8	10
85	Changes in vertical distribution and aggregative behaviour in response to population density for larval sea urchins (<i>Strongylocentrotus droebachiensis</i>) and sea stars (<i>Asterias rubens</i>). Marine Ecology, 2012, 33, 194-204.	1.1	10
86	Effects of temperature on larval swimming patterns regulate vertical distribution relative to thermoclines in Asterias rubens. Journal of Experimental Marine Biology and Ecology, 2013, 445, 1-12.	1.5	10
87	Distribution of echinoderm larvae relative to the halocline of a salt wedge. Marine Ecology - Progress Series, 2009, 377, 157-168.	1.9	10
88	Physical and biological factors affect the vertical distribution of larvae of benthic gastropods in a shallow embayment. Marine Ecology - Progress Series, 2012, 464, 135-151.	1.9	10
89	Colonization of benthic invertebrates in a submarine canyon in the NW Atlantic. Marine Ecology - Progress Series, 2016, 544, 53-64.	1.9	10
90	Patterns in the abundance of hyperbenthic zooplankton and colonization of marine benthic invertebrates on the seafloor of Saanich Inlet, a seasonally hypoxic fjord. Marine Ecology, 2013, 34, 2-13.	1.1	9

#	Article	IF	CITATIONS
91	Ecological criteria for designing effective MPA networks for large migratory pelagics: Assessing the consistency between IUCN best practices and scholarly literature. Marine Policy, 2021, 127, 104219.	3.2	9
92	Obligate hydrothermal vent fauna at East Diamante submarine volcano (Mariana Arc) exploit photosynthetic and chemosynthetic carbon sources. Marine Ecology - Progress Series, 2015, 525, 25-39.	1.9	9
93	Modeling of the larval response of green sea urchins to thermal stratification using a random walk approach. Journal of Experimental Marine Biology and Ecology, 2012, 438, 14-23.	1.5	8
94	Using object-based image analysis to determine seafloor fine-scale features and complexity. Limnology and Oceanography: Methods, 2015, 13, 553-567.	2.0	8
95	Delimiting oceanographic provinces to determine drivers of mesoscale patterns in benthic megafauna: A case study in the Barents Sea. Progress in Oceanography, 2016, 146, 187-198.	3.2	8
96	Is substrate composition a suitable predictor for deep-water coral occurrence on fine scales?. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 124, 55-65.	1.4	8
97	Larval Ecology of Echinoids. Developments in Aquaculture and Fisheries Science, 2013, 38, 69-81.	1.3	7
98	Fine-Scale Distribution and Spatial Variability of Benthic Invertebrate Larvae in an Open Coastal Embayment in Nova Scotia, Canada. PLoS ONE, 2014, 9, e106178.	2.5	7
99	Effects of intrinsic and extrinsic factors on reproduction of an ecologically significant invasive bryozoan: implications for invasion success. Marine Biology, 2017, 164, 1.	1.5	7
100	Environmental drivers of epibenthic megafauna on a deep temperate continental shelf: A multiscale approach. Progress in Oceanography, 2018, 162, 171-186.	3.2	7
101	Interannual Variation in the Population Dynamics of Juveniles of the Deep-Sea Crab Chionoecetes tanneri. Frontiers in Marine Science, 2019, 6, .	2.5	7
102	Overlap in the distributions between indigenous and non-indigenous decapods in a brackish micro-tidal system. Aquatic Biology, 2009, 8, 1-13.	1.4	7
103	Bay-scale patterns in the distribution, aggregation and spatial variability of larvae of benthic invertebrates. Marine Ecology - Progress Series, 2014, 503, 139-156.	1.9	7
104	Predictive habitat model for deep gorgonians needs better resolution: Reply to Etnoyer &	1.9	7
105	Processes and Interactions in Macrofaunal Assemblages at Hydrothermal Vents: A Modeling Perspective. Geophysical Monograph Series, 0, , 259-274.	0.1	6
106	Quantifying mortality of modular organisms: a comparison of partial and wholeâ€colony mortality in a colonial bryozoan. Ecosphere, 2016, 7, e01483.	2.2	6
107	Effect of temperature on the larval biology of ribbed mussels (Geukensia demissa) and insights on their northern range limit. Journal of Experimental Marine Biology and Ecology, 2019, 512, 31-41.	1.5	6
108	Hydrodynamic Connectivity of Habitats of Deep-Water Corals in Corsair Canyon, Northwest Atlantic: A Case for Cross-Boundary Conservation. Frontiers in Marine Science, 2019, 6, .	2.5	6

#	Article	IF	CITATIONS
109	Foresight Workshop on Advances in Ocean Biological Observations: a sustained system for deep-ocean meroplankton. Research Ideas and Outcomes, 0, 6, .	1.0	5
110	Gregarious settlement of tubeworms at deep-sea hydrothermal vents on the Tonga–Kermadec arc, South Pacific. Journal of the Marine Biological Association of the United Kingdom, 2011, 91, 15-22.	0.8	4
111	In situ swimming characteristics of the sea scallop, Placopecten magellanicus, on German Bank, Gulf of Maine. Journal of the Marine Biological Association of the United Kingdom, 2014, 94, 1019-1026.	0.8	4
112	Environmental Protection Requires Accurate Application of Scientific Evidence. Trends in Ecology and Evolution, 2021, 36, 14-15.	8.7	4
113	Effects of outplanting time on growth, shedding and quality of Saccharina latissima (Phaeophyceae) in its northern distribution range. Journal of Applied Phycology, 2021, 33, 2415-2431.	2.8	4
114	Understanding population dynamics of a numerically dominant species at hydrothermal vents: a matrix modeling approach. Marine Ecology - Progress Series, 2010, 403, 113-128.	1.9	4
115	Lack of substrate specificity contributes to invasion success and persistence of Membranipora membranacea in the northwest Atlantic. Marine Ecology - Progress Series, 2017, 580, 117-129.	1.9	4
116	Ocean temperature does not limit the establishment and rate of secondary spread of an ecologically significant invasive bryozoan in the northwest Atlantic. Aquatic Invasions, 2019, 14, 594-614.	1.6	4
117	Modeling Hydrothermal Processes at Ocean Spreading Centers: Magma to Microbe-An Overview. Geophysical Monograph Series, 0, , 1-13.	0.1	3
118	Bivalve populations inhabiting hydrothermal vents on submarine volcanoes: using size frequency distributions to infer potential regulatory factors. Marine Ecology, 2015, 36, 62-70.	1.1	3
119	Selection of predictor variables for species distribution models: a case study with an invasive marine bryozoan. Oecologia, 2022, 198, 319.	2.0	3
120	EFFECT OF POLYCARBONATE CONTAINERS ON THE GROWTH OF TWO SPECIES OF MARINE DIATOMS. Journal of Phycology, 1989, 25, 605-608.	2.3	2
121	Predicting the interactions between "ecologically equivalent―indigenous and nonindigenous brachyurans. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 983-995.	1.4	2
122	Recovery capacity of the invasive colonial bryozoan Membranipora membranacea from damage: effects of temperature, location, and magnitude of damage. Marine Biology, 2015, 162, 1769-1778.	1.5	2
123	Subregional variation in cover and diversity of hard coral (Scleractinia) in the Western Province, Solomon Islands following an unprecedented global bleaching event. PLoS ONE, 2020, 15, e0242153.	2.5	2
124	Modelling rates of random search over the transition from diffusive to ballistic movement of plankton. Journal of Plankton Research, 2017, 39, 815-825.	1.8	1
125	The Efficacy of Small Closures: A Tale of Two Marine Protected Areas in Canada. , 2018, , 207-238.		1
126	Low predation rates on the larvae of three species of barnacles by the ctenophore Pleurobrachia pileus. Marine Ecology - Progress Series, 2015, 541, 105-122.	1.9	1

#	Article	IF	CITATIONS
127	Rapid egg transport following coral mass spawning at Ningaloo Reef, Western Australia. Bulletin of Marine Science, 2016, 92, 529-544.	0.8	0
128	Larval ecology of echinoids. Developments in Aquaculture and Fisheries Science, 2020, 43, 77-93.	1.3	0