## Marco Maccaferri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3322349/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF                | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 1  | Characterization of polyploid wheat genomic diversity using a highâ€density 90Â000 single nucleotide<br>polymorphism array. Plant Biotechnology Journal, 2014, 12, 787-796.                                      | 4.1               | 1,828              |
| 2  | Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.                                                                                             | 6.0               | 781                |
| 3  | Durum wheat genome highlights past domestication signatures and future improvement targets.<br>Nature Genetics, 2019, 51, 885-895.                                                                               | 9.4               | 576                |
| 4  | Quantitative Trait Loci for Grain Yield and Adaptation of Durum Wheat ( <i>Triticum durum</i> Desf.)<br>Across a Wide Range of Water Availability. Genetics, 2008, 178, 489-511.                                 | 1.2               | 397                |
| 5  | A highâ€density, <scp>SNP</scp> â€based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnology Journal, 2015, 13, 648-663.                  | 4.1               | 386                |
| 6  | A Genome-Wide Association Study of Resistance to Stripe Rust ( <i>Puccinia striiformis</i> f.) Tj ETQq0 0 0 rgBT /0<br>G3: Genes, Genomes, Genetics, 2015, 5, 449-465.                                           | Overlock 1<br>0.8 | 0 Tf 50 547<br>356 |
| 7  | Mapping QTLs Regulating Morpho-physiological Traits and Yield: Case Studies, Shortcomings and Perspectives in Drought-stressed Maize. Annals of Botany, 2002, 89, 941-963.                                       | 1.4               | 331                |
| 8  | Association mapping in durum wheat grown across a broad range of water regimes. Journal of Experimental Botany, 2011, 62, 409-438.                                                                               | 2.4               | 270                |
| 9  | Population structure and long-range linkage disequilibrium in a durum wheat elite collection.<br>Molecular Breeding, 2005, 15, 271-290.                                                                          | 1.0               | 212                |
| 10 | Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. Journal of<br>Experimental Botany, 2016, 67, 1161-1178.                                                                   | 2.4               | 206                |
| 11 | Resequencing of 145 Landmark Cultivars Reveals Asymmetric Sub-genome Selection and Strong<br>Founder Genotype Effects on Wheat Breeding in China. Molecular Plant, 2020, 13, 1733-1751.                          | 3.9               | 129                |
| 12 | A multiparental cross population for mapping <scp>QTL</scp> for agronomic traits in durum wheat<br>( <i><scp>T</scp>riticum turgidum</i> ssp. <i>durum</i> ). Plant Biotechnology Journal, 2016, 14,<br>735-748. | 4.1               | 121                |
| 13 | High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theoretical and Applied Genetics, 2011, 123, 555-569.                                                                        | 1.8               | 120                |
| 14 | Comparative Aerial and Ground Based High Throughput Phenotyping for the Genetic Dissection of<br>NDVI as a Proxy for Drought Adaptive Traits in Durum Wheat. Frontiers in Plant Science, 2018, 9, 893.           | 1.7               | 117                |
| 15 | Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Molecular Biology, 2002, 48, 601-613.                                          | 2.0               | 116                |
| 16 | Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping. Theoretical and Applied Genetics, 2013, 126, 1237-1256.                            | 1.8               | 116                |
| 17 | Genetic dissection of seminal root architecture in elite durum wheat germplasm. Annals of Applied Biology, 2007, 151, 291-305.                                                                                   | 1.3               | 115                |
| 18 | Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Molecular Breeding, 2014, 34, 1629-1645.                                                         | 1.0               | 115                |

MARCO MACCAFERRI

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant and<br>Soil, 2003, 255, 35-54.                                                                              | 1.8 | 104       |
| 20 | Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theoretical and Applied Genetics, 2003, 107, 783-797.                                           | 1.8 | 104       |
| 21 | Extending the Marker × Environment Interaction Model for Genomicâ€Enabled Prediction and<br>Genomeâ€Wide Association Analysis in Durum Wheat. Crop Science, 2016, 56, 2193-2209.                                | 0.8 | 101       |
| 22 | Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo―and neoduplicated subgenomes. Plant Journal, 2013, 76, 1030-1044.                                                     | 2.8 | 99        |
| 23 | An integrated DArT-SSR linkage map of durum wheat. Molecular Breeding, 2008, 22, 629-648.                                                                                                                       | 1.0 | 97        |
| 24 | Association mapping of leaf rust response in durum wheat. Molecular Breeding, 2010, 26, 189-228.                                                                                                                | 1.0 | 86        |
| 25 | A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage<br>disequilibrium analysis and genome-wide association mapping. BMC Genomics, 2014, 15, 873.                               | 1.2 | 85        |
| 26 | Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in<br>emmer wheat (Triticum turgidum ssp. dicoccum). Theoretical and Applied Genetics, 2017, 130, 2249-2270. | 1.8 | 80        |
| 27 | QTL dissection of yield components and morpho-physiological traits in a durum wheat elite population tested in contrasting thermo-pluviometric conditions. Crop and Pasture Science, 2014, 65, 80.              | 0.7 | 79        |
| 28 | Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 2021, 134, 1645-1662.                                                                                         | 1.8 | 74        |
| 29 | Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f. sp. tritici<br>in elite durum wheat. Theoretical and Applied Genetics, 2017, 130, 649-667.                         | 1.8 | 71        |
| 30 | Association Mapping Reveals Novel Stem Rust Resistance Loci in Durum Wheat at the Seedling Stage.<br>Plant Genome, 2014, 7, plantgenome2013.08.0026.                                                            | 1.6 | 67        |
| 31 | Novel Sources of Stripe Rust Resistance Identified by Genome-Wide Association Mapping in Ethiopian<br>Durum Wheat (Triticum turgidum ssp. durum). Frontiers in Plant Science, 2017, 8, 774.                     | 1.7 | 66        |
| 32 | Sequenceâ€based SNP genotyping in durum wheat. Plant Biotechnology Journal, 2013, 11, 809-817.                                                                                                                  | 4.1 | 63        |
| 33 | Validation and characterization of a major QTL affecting leaf ABA concentration in maize. Molecular<br>Breeding, 2005, 15, 291-303.                                                                             | 1.0 | 59        |
| 34 | A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps<br>on the distal region of chromosome arm 7BL. Theoretical and Applied Genetics, 2008, 117, 1225-1240.      | 1.8 | 59        |
| 35 | Carotenoid Pigment Content in Durum Wheat (Triticum turgidum L. var durum): An Overview of Quantitative Trait Loci and Candidate Genes. Frontiers in Plant Science, 2019, 10, 1347.                             | 1.7 | 59        |
| 36 | Exploring and exploiting the genetic variation of Fusarium head blight resistance for<br>genomic-assisted breeding in the elite durum wheat gene pool. Theoretical and Applied Genetics, 2019,<br>132, 969-988. | 1.8 | 57        |

MARCO MACCAFERRI

| #  | Article                                                                                                                                                                                                                                 | IF              | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 37 | A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 79-85.                                                  | 0.4             | 54           |
| 38 | Understanding the relationships between genetic and phenotypic structures of a collection of elite durum wheat accessions. Field Crops Research, 2010, 119, 91-105.                                                                     | 2.3             | 54           |
| 39 | Multi-Trait, Multi-Environment Genomic Prediction of Durum Wheat With Genomic Best Linear<br>Unbiased Predictor and Deep Learning Methods. Frontiers in Plant Science, 2019, 10, 1311.                                                  | 1.7             | 47           |
| 40 | The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial<br>Alleles. Frontiers in Plant Science, 2020, 11, 569905.                                                                             | 1.7             | 44           |
| 41 | Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based<br>detection of Lr14a in durum wheat (Triticum durum Desf.). Theoretical and Applied Genetics, 2013, 126,<br>1077-1101.                         | 1.8             | 43           |
| 42 | Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes <i>rtcs</i> and <i>rum1</i> . Journal of Experimental Botany, 2016, 67, 1149-1159.                          | 2.4             | 40           |
| 43 | Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum) Tj ETQq1                                                                                                                           | 1 0,7843<br>2.3 | 14 rgBT /Ove |
| 44 | Genome-wide association analysis unveils novel QTLs for seminal root system architecture traits in<br>Ethiopian durum wheat. BMC Genomics, 2021, 22, 20.                                                                                | 1.2             | 33           |
| 45 | Differential representation of albumins and globulins during grain development in durum wheat and its possible functional consequences. Journal of Proteomics, 2017, 162, 86-98.                                                        | 1.2             | 31           |
| 46 | Nucleotide-binding site (NBS) profiling of genetic diversity in durum wheat. Genome, 2006, 49, 1473-1480.                                                                                                                               | 0.9             | 26           |
| 47 | Virulence Phenotypes and Molecular Genotypes in Collections of Puccinia triticina from Italy. Plant<br>Disease, 2010, 94, 420-424.                                                                                                      | 0.7             | 26           |
| 48 | Resistance to Soil-borne cereal mosaic virus in durum wheat is controlled by a major QTL on chromosome arm 2BS and minor loci. Theoretical and Applied Genetics, 2011, 123, 527-544.                                                    | 1.8             | 25           |
| 49 | Asparagine synthetase genes (AsnS1 and AsnS2) in durum wheat: structural analysis and expression under nitrogen stress. Euphytica, 2018, 214, 1.                                                                                        | 0.6             | 21           |
| 50 | Quantitative trait loci for agronomic traits in tetraploid wheat for enhancing grain yield in<br>Kazakhstan environments. PLoS ONE, 2020, 15, e0234863.                                                                                 | 1.1             | 19           |
| 51 | Genomic Regions Associated with the Control of Flowering Time in Durum Wheat. Plants, 2020, 9,<br>1628.                                                                                                                                 | 1.6             | 15           |
| 52 | Highâ€ŧhroughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat<br>under drought. Plant, Cell and Environment, 2021, 44, 2858-2878.                                                                | 2.8             | 12           |
| 53 | Genome Wide Association Study Uncovers the QTLome for Osmotic Adjustment and Related Drought<br>Adaptive Traits in Durum Wheat. Genes, 2022, 13, 293.                                                                                   | 1.0             | 12           |
| 54 | Genetic analysis of Soil-Borne Cereal Mosaic Virus response in durum wheat: evidence for the role of<br>the major quantitative trait locus QSbm.ubo-2BS and of minor quantitative trait loci. Molecular<br>Breeding, 2012, 29, 973-988. | 1.0             | 11           |

| #  | Article                                                                                                                                                                                                                                                 | IF         | CITATIONS       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|
| 55 | Yield of chromosomally engineered durum wheat-Thinopyrum ponticum recombinant lines in a range of contrasting rain-fed environments. Field Crops Research, 2018, 228, 147-157.                                                                          | 2.3        | 11              |
| 56 | Genomics of Tolerance to Abiotic Stress in the Triticeae. , 2009, , 481-558.                                                                                                                                                                            |            | 8               |
| 57 | Genomic tools for durum wheat breeding: de novo assembly of Svevo transcriptome and SNP<br>discovery in elite germplasm. BMC Genomics, 2019, 20, 278.                                                                                                   | 1.2        | 7               |
| 58 | Monitoring changes of lipid composition in durum wheat during grain development. Journal of Cereal Science, 2021, 97, 103131.                                                                                                                           | 1.8        | 6               |
| 59 | Abiotic Stress Response of Near-Isogenic Spring Durum Wheat Lines under Different Sowing Densities.<br>International Journal of Molecular Sciences, 2021, 22, 2053.                                                                                     | 1.8        | 6               |
| 60 | Genetic variation for aerenchyma and other root anatomical traits in durum wheat (Triticum durum) Tj ETQq0 0 (                                                                                                                                          | ) rgBT /Ov | verlgck 10 Tf 5 |
| 61 | Genetic analysis of novel resistance sources and genome-wide association mapping identified novel QTLs for resistance to Zymoseptoria tritici, the causal agent of septoria tritici blotch in wheat.<br>Journal of Applied Genetics, 2022, 63, 429-445. | 1.0        | 5               |
| 62 | Sequence-Based Marker Assisted Selection in Wheat. , 2022, , 513-538.                                                                                                                                                                                   |            | 3               |
| 63 | Genomics Approaches to Dissect the Genetic Basis of Drought Resistance in Durum Wheat. , 2015, , 213-223.                                                                                                                                               |            | 2               |
| 64 | Molecular Markers and QTL Analysis for Grain Quality Improvement in Wheat. , 2007, , 25-50.                                                                                                                                                             |            | 2               |

65Back Cover Image. Plant, Cell and Environment, 2021, 44, .2.80