
Michal Bassani-Sternberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3322163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of tumor antigens with immunopeptidomics. Nature Biotechnology, 2022, 40, 175-188.	9.4	93
2	Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nature Biotechnology, 2022, 40, 656-660.	9.4	41
3	Bedside formulation of a personalized multi-neoantigen vaccine against mammary carcinoma. , 2022, 10, e002927.		14
4	A roadmap for driving CAR TÂcells toward the oncogenic immunopeptidome. Cancer Cell, 2022, 40, 20-22.	7.7	7
5	Navigating Critical Challenges Associated with Immunopeptidomics-Based Detection of Proteasomal Spliced Peptide Candidates. Cancer Immunology Research, 2022, 10, 275-284.	1.6	14
6	Tryptophan depletion results in tryptophan-to-phenylalanine substitutants. Nature, 2022, 603, 721-727.	13.7	47
7	Deciphering the landscape of phosphorylated HLA-II ligands. IScience, 2022, 25, 104215.	1.9	3
8	Immune pressure sculps tumor cells and trims high-quality mutations. Cancer Cell, 2022, 40, 717-719.	7.7	1
9	CIITA-Transduced Glioblastoma Cells Uncover a Rich Repertoire of Clinically Relevant Tumor-Associated HLA-II Antigens. Molecular and Cellular Proteomics, 2021, 20, 100032.	2.5	22
10	Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction. Molecular and Cellular Proteomics, 2021, 20, 100080.	2.5	49
11	Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Reports Medicine, 2021, 2, 100194.	3.3	77
12	Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. Npj Vaccines, 2021, 6, 36.	2.9	27
13	In-depth immune and molecular profiling of melanoma patients receiving adoptive T-cell therapy reveals biomarkers of efficacy in ATATIL study Journal of Clinical Oncology, 2021, 39, 2533-2533.	0.8	0
14	Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Reports, 2021, 36, 109412.	2.9	60
15	Reversion analysis reveals the in vivo immunogenicity of a poorly MHC I-binding cancer neoepitope. Nature Communications, 2021, 12, 6423.	5.8	18
16	A Personalized Neoantigen Vaccine in Combination with Platinum-Based Chemotherapy Induces a T-Cell Response Coinciding with a Complete Response in Endometrial Carcinoma. Cancers, 2021, 13, 5801.	1.7	2
17	Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020, 183, 818-834.e13.	13.5	287
18	Antitumour dendritic cell vaccination in a priming and boosting approach. Nature Reviews Drug Discovery, 2020, 19, 635-652.	21.5	148

#	Article	IF	CITATIONS
19	Biogenesis of HLA Ligand Presentation in Immune Cells Upon Activation Reveals Changes in Peptide Length Preference. Frontiers in Immunology, 2020, 11, 1981.	2.2	9
20	Rapid tumor vaccine using Toll-like receptor-activated ovarian cancer ascites monocytes. , 2020, 8, e000875.		16
21	Deciphering the Mechanisms of Improved Immunogenicity of Hypochlorous Acid-Treated Antigens in Anti-Cancer Dendritic Cell-Based Vaccines. Vaccines, 2020, 8, 271.	2.1	13
22	Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nature Communications, 2020, 11, 1293.	5.8	196
23	Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands. Molecular and Cellular Proteomics, 2020, 19, 390-404.	2.5	47
24	Cathepsin S Regulates Antigen Processing and T Cell Activity in Non-Hodgkin Lymphoma. Cancer Cell, 2020, 37, 674-689.e12.	7.7	55
25	Comment on "A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands― Science Immunology, 2019, 4, .	5.6	39
26	Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nature Biotechnology, 2019, 37, 1283-1286.	9.4	208
27	Analysis of Secondary Structure Biases in Naturally Presented HLA-I Ligands. Frontiers in Immunology, 2019, 10, 2731.	2.2	8
28	A Phase Ib Study of the Combination of Personalized Autologous Dendritic Cell Vaccine, Aspirin, and Standard of Care Adjuvant Chemotherapy Followed by Nivolumab for Resected Pancreatic Adenocarcinoma—A Proof of Antigen Discovery Feasibility in Three Patients. Frontiers in Immunology, 2019, 10, 1832.	2.2	73
29	High-Throughput, Fast, and Sensitive Immunopeptidomics Sample Processing for Mass Spectrometry. Methods in Molecular Biology, 2019, 1913, 67-79.	0.4	48
30	Tumour-reactive T cell subsets in the microenvironment of ovarian cancer. British Journal of Cancer, 2019, 120, 424-434.	2.9	44
31	Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. , 2019, 7, 309.		112
32	A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. Journal of Translational Medicine, 2019, 17, 391.	1.8	42
33	Mass spectrometry–driven exploration reveals nuances of neoepitope-driven tumor rejection. JCl Insight, 2019, 4, .	2.3	42
34	Editorial: Novel Strategies for Anti-Tumor Vaccines. Frontiers in Immunology, 2019, 10, 3117.	2.2	7
35	Mass Spectrometry Based Immunopeptidomics for the Discovery of Cancer Neoantigens. Methods in Molecular Biology, 2018, 1719, 209-221.	0.4	46
36	High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound InterferonÎ ³ -Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome. Molecular and Cellular Proteomics, 2018, 17, 533-548.	2.5	224

#	Article	IF	CITATIONS
37	The C-terminal extension landscape of naturally presented HLA-I ligands. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5083-5088.	3.3	48
38	The SysteMHC Atlas project. Nucleic Acids Research, 2018, 46, D1237-D1247.	6.5	119
39	The Length Distribution and Multiple Specificity of Naturally Presented HLA-I Ligands. Journal of Immunology, 2018, 201, 3705-3716.	0.4	145
40	Multi-level Proteomics Identifies CT45 as a Chemosensitivity Mediator and Immunotherapy Target in Ovarian Cancer. Cell, 2018, 175, 159-170.e16.	13.5	127
41	Estimating the Contribution of Proteasomal Spliced Peptides to the HLA-I Ligandome*. Molecular and Cellular Proteomics, 2018, 17, 2347-2357.	2.5	105
42	Minimal Information About an Immunoâ€Peptidomics Experiment (MIAIPE). Proteomics, 2018, 18, e1800110.	1.3	23
43	Predicting Antigen Presentation—What Could We Learn From a Million Peptides?. Frontiers in Immunology, 2018, 9, 1716.	2.2	159
44	A Case for a Human Immuno-Peptidome Project Consortium. Immunity, 2017, 47, 203-208.	6.6	84
45	â€~Hotspots' of Antigen Presentation Revealed by Human Leukocyte Antigen Ligandomics for Neoantigen Prioritization. Frontiers in Immunology, 2017, 8, 1367.	2.2	133
46	Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Computational Biology, 2017, 13, e1005725.	1.5	250
47	Mass spectrometry-based antigen discovery for cancer immunotherapy. Current Opinion in Immunology, 2016, 41, 9-17.	2.4	165
48	Current tools for predicting cancer-specific T cell immunity. Oncolmmunology, 2016, 5, e1177691.	2.1	45
49	Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide–HLA Interactions. Journal of Immunology, 2016, 197, 2492-2499.	0.4	150
50	Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nature Communications, 2016, 7, 13404.	5.8	613
51	T Cells Engineered to Express a T-Cell Receptor Specific for Glypican-3 to Recognize and Kill Hepatoma Cells InÂVitro and inÂMice. Gastroenterology, 2015, 149, 1042-1052.	0.6	96
52	Mass Spectrometry of Human Leukocyte Antigen Class I Peptidomes Reveals Strong Effects of Protein Abundance and Turnover on Antigen Presentation. Molecular and Cellular Proteomics, 2015, 14, 658-673.	2.5	445
53	ITOC2 – 021. The melanoma immune-peptidome for T-cell-based anti-tumour immunotherapies. European Journal of Cancer, 2015, 51, S8.	1.3	0

#	Article	IF	CITATIONS
55	P64. T cell re-direction against Glypican-3 for immunotherapy of hepatocellular carcinoma. , 2014, 2, .		0
56	O98 T-CELL RE-DIRECTION AGAINST GLYPICAN-3 FOR IMMUNOTHERAPY OF HEPATOCELLULAR CARCINOMA (HCC). Journal of Hepatology, 2014, 60, S40.	1.8	0
57	The Effect of Proteasome Inhibition on the Generation of the Human Leukocyte Antigen (HLA) Peptidome. Molecular and Cellular Proteomics, 2013, 12, 1853-1864.	2.5	99
58	1088 In-depth Analysis of Cancer HLA-I Peptidomes. European Journal of Cancer, 2012, 48, S262.	1.3	0
59	The Human Immunopeptidome Project, a Suggestion for yet another Postgenome Next Big Thing. Molecular and Cellular Proteomics, 2011, 10, 0111.011833.	2.5	53
60	Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18769-18776.	3.3	127
61	Subtractive Hybridization Techniques to Study Cellular Senescence. Methods in Molecular Biology, 2007, 371, 289-305.	0.4	6
62	Differential expression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Molecular Biology, 2004, 56, 367-380.	2.0	66
63	Large-scale identification of leaf senescence-associated genes. Plant Journal, 2003, 36, 629-642.	2.8	340