Oliver Röhrle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3322022/publications.pdf

Version: 2024-02-01

118 papers 1,631 citations

304743 22 h-index 36 g-index

122 all docs $\begin{array}{c} 122 \\ \text{docs citations} \end{array}$

times ranked

122

1437 citing authors

#	Article	IF	CITATIONS
1	Muscle-Specific High-Density Electromyography Arrays for Hand Gesture Classification. IEEE Transactions on Biomedical Engineering, 2022, 69, 1758-1766.	4.2	6
2	Time-periodic steady-state solution of fluid-structure interaction and cardiac flow problems through multigrid-reduction-in-time. Computer Methods in Applied Mechanics and Engineering, 2022, 389, 114368.	6.6	4
3	Spindle Model Responsive to Mixed Fusimotor Inputs: an updated version of the Maltenfort and Burke (2003) model. Physiome, 2022, , .	0.3	1
4	Spindle Model Responsive to Mixed Fusimotor Inputs: an updated version of the Maltenfort and Burke (2003) model. Physiome, 2022, , .	0.3	0
5	Spindle Model Responsive to Mixed Fusimotor Inputs: an updated version of the Maltenfort and Burke (2003) model. Physiome, 2022, , .	0.3	O
6	Numerical Study of the Stress State on the Oral Mucosa and Abutment Tooth upon Insertion of Partial Dentures in the Mandible. International Journal for Numerical Methods in Biomedical Engineering, 2022, , e3604.	2.1	0
7	Investigating the spatial resolution of EMG and MMG based on a systemic multi-scale model. Biomechanics and Modeling in Mechanobiology, 2022, 21, 983-997.	2.8	11
8	Classification of Biomechanical Models: The Wrong Battle Between Phenomenological and Structural Approaches, the Partly Underestimated Strength of Phenomenology and Challenges for Future (Clinical) Applications. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2022, , 335-352.	1.0	1
9	FINITE ELEMENT EVALUATION OF THE EFFECT OF ADHESIVE CREAMS ON THE STRESS STATE OF DENTURES AND ABUTMENT TEETH. Journal of Mechanics in Medicine and Biology, 2022, 22, .	0.7	1
10	Modelling intra-muscular contraction dynamics using in silico to in vivo domain translation. BioMedical Engineering OnLine, 2022, 21, .	2.7	4
11	Tangent second-order homogenisation estimates for incompressible hyperelastic composites with fibrous microstructures and anisotropic phases. Journal of the Mechanics and Physics of Solids, 2021, 147, 104251.	4.8	7
12	Low-Profile Electromagnetic Field Sensors in the Measurement and Modelling of Three-Dimensional Jaw Kinematics and Occlusal Loading. Annals of Biomedical Engineering, 2021, 49, 1561-1571.	2.5	5
13	A dynamical model for the calcineurinâ€NFATc signaling pathway and muscle fiber shifting. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000274.	0.2	2
14	Simulating vertebroplasty: A biomechanical challenge. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000313.	0.2	0
15	Biopolymer segmentation from CLSM microscopy images using a convolutional neural network. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000188.	0.2	2
16	Variations in Muscle Activity and Exerted Torque During Temporary Blood Flow Restriction in Healthy Individuals. Frontiers in Bioengineering and Biotechnology, 2021, 9, 557761.	4.1	1
17	Finite Element Evaluation of the Effect of Adhesive Creams on the Stress State of Dentures and Oral Mucosa. Applied Bionics and Biomechanics, 2021, 2021, 1-9.	1.1	4
18	Editorial: Somatosensory Integration in Human Movement: Perspectives for Neuromechanics, Modelling and Rehabilitation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 725603.	4.1	1

#	Article	IF	CITATIONS
19	A Physiology-Guided Classification of Active-Stress and Active-Strain Approaches for Continuum-Mechanical Modeling of Skeletal Muscle Tissue. Frontiers in Physiology, 2021, 12, 685531.	2.8	4
20	Challenges in Robotic Soft Tissue Manipulationâ€"Problem Identification Based on an Interdisciplinary Case Study of a Teleoperated Drawing Robot in Practice. , 2021, , 245-262.		0
21	Multi-physics Multi-scale HPC Simulations of Skeletal Muscles. , 2021, , 185-203.		0
22	Modelling the electrical activity of skeletal muscle tissue using a multi-domain approach. Biomechanics and Modeling in Mechanobiology, 2020, 19, 335-349.	2.8	14
23	Comparative Study of a Biomechanical Model-based and Black-box Approach for Subject-Specific Movement Prediction*., 2020, 2020, 4775-4778.		0
24	A NanoFE simulation-based surrogate machine learning model to predict mechanical functionality of protein networks from live confocal imaging. Computational and Structural Biotechnology Journal, 2020, 18, 2774-2788.	4.1	6
25	A Systematic Review and Meta-Analysis on the Longitudinal Effects of Unilateral Knee Extension Exercise on Muscle Strength. Frontiers in Sports and Active Living, 2020, 2, 518148.	1.8	1
26	Multilevel Convergence Analysis of Multigrid-Reduction-in-Time. SIAM Journal of Scientific Computing, 2020, 42, A771-A796.	2.8	14
27	Decoding rejuvenating effects of mechanical loading on skeletal aging using in vivo νCT imaging and deep learning. Acta Biomaterialia, 2020, 106, 193-207.	8.3	7
28	A class of analytic solutions for verification and convergence analysis of linear and nonlinear fluid-structure interaction algorithms. Computer Methods in Applied Mechanics and Engineering, 2020, 362, 112841.	6.6	5
29	Occlusal load modelling significantly impacts the predicted tooth stress response during biting: a simulation study. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 261-270.	1.6	14
30	POD-DEIM Model Order Reduction for the Monodomain Reaction-Diffusion Sub-Model of the Neuro-Muscular System. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2020, , 177-190.	0.2	1
31	Skeletal Muscle Modelling. , 2020, , 2292-2301.		0
32	Characterization of Electromechanical Delay Based on a Biophysical Multi-Scale Skeletal Muscle Model. Frontiers in Physiology, 2019, 10, 1270.	2.8	22
33	Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1457.	6.6	35
34	Extensive eccentric contractions in intact cardiac trabeculae: revealing compelling differences in contractile behaviour compared to skeletal muscles. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190719.	2.6	16
35	A microstructurally-based, multi-scale, continuum-mechanical model for the passive behaviour of skeletal muscle tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 171-186.	3.1	40
36	Simulating electromechanical delay across the scales – relating the behavior of single sarcomers on a subâ€cellular scale and the muscleâ€tendon system on the organ scale. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900312.	0.2	0

#	Article	IF	CITATIONS
37	The plastid skeleton: a source of ideas in the nano range. , 2019, , 163-166.		3
38	A parametric permeability study for a simplified vertebra based on regular microstructures. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900383.	0.2	0
39	People with low back pain show reduced movement complexity during their most active daily tasks. European Journal of Pain, 2019, 23, 410-418.	2.8	17
40	Gradientâ€based optimization with Bâ€splines on sparse grids for solving forwardâ€dynamics simulations of threeâ€dimensional, continuumâ€mechanical musculoskeletal system models. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2965.	2.1	14
41	Convergence of the multigrid reduction in time algorithm for the linear elasticity equations. Numerical Linear Algebra With Applications, 2018, 25, e2155.	1.6	19
42	Biomechanical investigation of two long bone growth modulation techniques by finite element simulations. Journal of Orthopaedic Research, 2018, 36, 1398-1405.	2.3	7
43	Occlusal loading during biting from an experimental and simulation point of view. Dental Materials, 2018, 34, 58-68.	3.5	37
44	Predicting Skeletal Muscle Force from Motorâ€Unit Activity using a 3D FE Model. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800035.	0.2	0
45	Structure and function of the musculoskeletal ovipositor system of an ichneumonid wasp. BMC Zoology, 2018, 3, .	1.0	14
46	Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems. Frontiers in Physiology, 2018, 9, 816.	2.8	13
47	Featureâ€based Classification of Protein Networks using Confocal Microscopy Imaging and Machine Learning. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800246.	0.2	1
48	An Efficient Modelling-Simulation-Analysis Workflow to Investigate Stump-Socket Interaction Using Patient-Specific, Three-Dimensional, Continuum-Mechanical, Finite Element Residual Limb Models. Frontiers in Bioengineering and Biotechnology, 2018, 6, 126.	4.1	25
49	Computational 3D imaging to quantify structural components and assembly of protein networks. Acta Biomaterialia, 2018, 69, 206-217.	8.3	14
50	A novel computational method to determine subject-specific bite force and occlusal loading during mastication. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 453-460.	1.6	14
51	Cytological analysis and structural quantification of FtsZ1-2 and FtsZ2-1 network characteristics in Physcomitrella patens. Scientific Reports, 2018, 8, 11165.	3.3	14
52	Skeletal Muscle Modelling. , 2018, , 1-10.		2
53	POD-DEIM reduction of computational EMG models. Journal of Computational Science, 2017, 19, 86-96.	2.9	18
54	A two-muscle, continuum-mechanical forward simulation of the upper limb. Biomechanics and Modeling in Mechanobiology, 2017, 16, 743-762.	2.8	55

#	Article	IF	CITATIONS
55	Validation of a nonâ€conforming monolithic fluidâ€structure interaction method using phaseâ€contrast MRI. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2845.	2.1	17
56	Experiment for validation of fluidâ€structure interaction models and algorithms. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2848.	2.1	23
57	Bone cement allocation analysis in artificial cancellous bone structures. Journal of Orthopaedic Translation, 2017, 8, 40-48.	3.9	7
58	A homogenisation method for the multiscale modelling of transversely isotropic skeletal muscle tissue. Proceedings in Applied Mathematics and Mechanics, 2017, 17, 183-184.	0.2	0
59	A framework for simulating gastric electrical propagation in confocal microscopy derived geometries., 2017, 2017, 4215-4218.		3
60	A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation. PLoS Computational Biology, 2017, 13, e1005773.	3.2	36
61	The Role of Parvalbumin, Sarcoplasmatic Reticulum Calcium Pump Rate, Rates of Cross-Bridge Dynamics, and Ryanodine Receptor Calcium Current on Peripheral Muscle Fatigue: A Simulation Study. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-14.	1.3	1
62	Exploring the Use of Non-Image-Based Ultrasound to Detect the Position of the Residual Femur within a Stump. PLoS ONE, 2016, 11, e0164583.	2.5	1
63	Force enhancement and stability of finite element muscle models. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 85-86.	0.2	3
64	Model order reduction of dynamic skeletal muscle models. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 851-852.	0.2	0
65	3D Fluidâ€Structure Interaction Experiment and Benchmark Results. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 451-452.	0.2	1
66	Multiscale modelling of skeletal muscle tissue by incorporating microstructural effects. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 75-76.	0.2	3
67	Towards modelling skeletal muscle growth and adaptation. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 921-924.	0.2	2
68	Analysis of confocal microscopy image data of Physcomitrella chloroplasts to reveal adaptation principles leading to structural stability at the nanoscale. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 69-70.	0.2	4
69	A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actinâ \in "titin interaction. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1423-1437.	2.8	39
70	Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling. Interface Focus, 2016, 6, 20150084.	3.0	34
71	Analysis of Physcomitrella Chloroplasts to Reveal Adaptation Principles Leading to Structural Stability at the Nano-Scale. Biologically-inspired Systems, 2016, , 261-275.	0.2	6
72	Adaptive Stiffness and Joint-Free Kinematics: Actively Actuated Rod-Shaped Structures in Plants and Animals and Their Biomimetic Potential in Architecture and Engineering. Biologically-inspired Systems, 2016, , 135-167.	0.2	7

#	Article	IF	Citations
73	Towards effective mechanical properties of skeletal muscle tissue via homogenisation. Proceedings in Applied Mathematics and Mechanics, 2015, 15, 83-84.	0.2	3
74	The Use of Collision Detection to Infer Multi-Camera Calibration Quality. Frontiers in Bioengineering and Biotechnology, 2015, 3, 65.	4.1	0
75	Multiphasic modelling of boneâ€cement injection into vertebral cancellous bone. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02696.	2.1	12
76	Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: A combined texture mapping and streamline approach. Journal of Theoretical Biology, 2015, 382, 34-43.	1.7	40
77	Predicting electromyographic signals under realistic conditions using a multiscale chemo–electro–mechanical finite element model. Interface Focus, 2015, 5, 20140076.	3.0	40
78	A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements. Frontiers in Physiology, 2014, 5, 498.	2.8	45
79	The role of oral soft tissues in swallowing function: what can tongue pressure tell us?. Australian Dental Journal, 2014, 59, 155-161.	1.5	33
80	Multiphasic Modelling of the Vertebral Bone for Cement-Injection Studies. Proceedings in Applied Mathematics and Mechanics, 2014, 14, 117-118.	0.2	0
81	Mathematically modelling surface EMG signals. Proceedings in Applied Mathematics and Mechanics, 2014, 14, 123-124.	0.2	5
82			
02	An integrated model of the neuromuscular system. , 2013, , .		8
83	An integrated model of the neuromuscular system. , 2013, , . Linking continuous and discrete intervertebral disc models through homogenisation. Biomechanics and Modeling in Mechanobiology, 2013, 12, 453-466.	2.8	19
	Linking continuous and discrete intervertebral disc models through homogenisation. Biomechanics	2.8	
83	Linking continuous and discrete intervertebral disc models through homogenisation. Biomechanics and Modeling in Mechanobiology, 2013, 12, 453-466. Model-based identification of motion sensor placement for tracking retraction and elongation of the		19
83	Linking continuous and discrete intervertebral disc models through homogenisation. Biomechanics and Modeling in Mechanobiology, 2013, 12, 453-466. Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue. Biomechanics and Modeling in Mechanobiology, 2013, 12, 383-399. Porous-media simulation of bone-cement spreading during vertebroplasty. Proceedings in Applied	2.8	19
83 84 85	Linking continuous and discrete intervertebral disc models through homogenisation. Biomechanics and Modeling in Mechanobiology, 2013, 12, 453-466. Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue. Biomechanics and Modeling in Mechanobiology, 2013, 12, 383-399. Porous-media simulation of bone-cement spreading during vertebroplasty. Proceedings in Applied Mathematics and Mechanics, 2013, 13, 67-68. Towards modelling the dynamics of a 3D continuum-mechanical two-muscle musculoskeletal system.	2.8	19 19
83 84 85	Linking continuous and discrete intervertebral disc models through homogenisation. Biomechanics and Modeling in Mechanobiology, 2013, 12, 453-466. Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue. Biomechanics and Modeling in Mechanobiology, 2013, 12, 383-399. Porous-media simulation of bone-cement spreading during vertebroplasty. Proceedings in Applied Mathematics and Mechanics, 2013, 13, 67-68. Towards modelling the dynamics of a 3D continuum-mechanical two-muscle musculoskeletal system. Proceedings in Applied Mathematics and Mechanics, 2013, 13, 65-66.	2.8 0.2 0.2	19 19 1 0
83 84 85 86	Linking continuous and discrete intervertebral disc models through homogenisation. Biomechanics and Modeling in Mechanobiology, 2013, 12, 453-466. Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue. Biomechanics and Modeling in Mechanobiology, 2013, 12, 383-399. Porous-media simulation of bone-cement spreading during vertebroplasty. Proceedings in Applied Mathematics and Mechanics, 2013, 13, 67-68. Towards modelling the dynamics of a 3D continuum-mechanical two-muscle musculoskeletal system. Proceedings in Applied Mathematics and Mechanics, 2013, 13, 65-66. On the treatment of active behaviour in continuum muscle mechanics. Proceedings in Applied Mathematics and Mechanics, 2013, 13, 71-72. Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source	2.8 0.2 0.2	19 19 1 0 2

#	Article	IF	Citations
91	Spreading out Muscle Mass within a Hill-Type Model: A Computer Simulation Study. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-13.	1.3	32
92	HOMOGENISATION LINKS CONTINUOUS AND DISCRETE INTERVERTEBRAL DISC MODELS $\hat{a} \in \text{``} A \text{ SIMULATION STUDY. Journal of Biomechanics, 2012, 45, S472.}$	2.1	0
93	Coupling 3D and 1D Skeletal Muscle Models. Proceedings in Applied Mathematics and Mechanics, 2012, 12, 111-112.	0.2	0
94	A geometrical model of skeletal muscle. Proceedings in Applied Mathematics and Mechanics, 2012, 12, 119-120.	0.2	0
95	Simulating a dual-array electrode configuration to investigate the influence of skeletal muscle fatigue following functional electrical stimulation. Computers in Biology and Medicine, 2012, 42, 915-924.	7.0	14
96	A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function. Frontiers in Physiology, 2012, 3, 358.	2.8	70
97	OpenCMISS: A multi-physics & multi-scale computational infrastructure for the VPH/Physiome project. Progress in Biophysics and Molecular Biology, 2011, 107, 32-47.	2.9	123
98	Homogenisation method to capture the non-linear behaviour of intervertebral discs in multi-body systems. Proceedings in Applied Mathematics and Mechanics, 2011, 11, 95-96.	0.2	2
99	Forward dynamics applied to a three-dimensional continuum-mechanical model of the upper limb. Proceedings in Applied Mathematics and Mechanics, 2011, 11, 115-116.	0.2	1
100	On the Coupling of 3D-1D Muscle Models for Lumbar Spine Mechanics. Proceedings in Applied Mathematics and Mechanics, 2011, 11, 125-126.	0.2	0
101	Segmentation of Skeletal Muscle Fibres for Applications in Computational Skeletal Muscle Mechanics. , 2011, , 107-117.		3
102	Impact of transmural heterogeneities on arterial adaptation. Biomechanics and Modeling in Mechanobiology, 2010, 9, 295-315.	2.8	27
103	Simulating the Electro-Mechanical Behavior of Skeletal Muscles. Computing in Science and Engineering, 2010, 12, 48-58.	1.2	26
104	Computational Continuum Biomechanics with Application to Swelling Media and Growth Phenomena. GAMM Mitteilungen, 2009, 32, 135-156.	5.5	12
105	Automatically Generating Subject-specific Functional Tooth Surfaces Using Virtual Mastication. Annals of Biomedical Engineering, 2009, 37, 1646-1653.	2.5	10
106	3D modelling of arterial growth for adaptation to hypertension â€" the influence of transmural changes in the mechanical environment. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 71-74.	0.2	1
107	Using a Motionâ€Capture System to Record Dynamic Articulation for Application in CAD/CAM Software. Journal of Prosthodontics, 2009, 18, 703-710.	3.7	40
108	Review of the human masticatory system and masticatory robotics. Mechanism and Machine Theory, 2008, 43, 1353-1375.	4.5	56

#	Article	IF	CITATIONS
109	Bridging Scales: A Three-Dimensional Electromechanical Finite Element Model of Skeletal Muscle. SIAM Journal of Scientific Computing, 2008, 30, 2882-2904.	2.8	64
110	A Computationally Efficient Optimization Kernel for Material Parameter Estimation Procedures. Journal of Biomechanical Engineering, 2007, 129, 279-283.	1.3	15
111	Anatomically based lower limb nerve model for electrical stimulation. BioMedical Engineering OnLine, 2007, 6, 48.	2.7	10
112	Three-dimensional finite element modelling of muscle forces during mastication. Journal of Biomechanics, 2007, 40, 3363-3372.	2.1	138
113	Bridging scales: An attempt to incorporate cellular responses within a three-dimensional FEM model of active muscle contraction. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 4020013-4020014.	0.2	0
114	First-order system least squares for the Oseen equations. Numerical Linear Algebra With Applications, 2006, 13, 523-542.	1.6	9
115	Mathematically Modeling the Effects of Electrically Stimulating Skeletal Muscle. , 2006, 2006, 4635-8.		2
116	Projection Multilevel Methods for Quasilinear Elliptic Partial Differential Equations: Theoretical Results. SIAM Journal on Numerical Analysis, 2006, 44, 139-152.	2.3	2
117	Projection Multilevel Methods for Quasilinear Elliptic Partial Differential Equations: Numerical Results. SIAM Journal on Numerical Analysis, 2006, 44, 120-138.	2.3	5
118	Mathematically Modeling the Effects of Electrically Stimulating Skeletal Muscle. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0