Laurent Heux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3321912/publications.pdf

Version: 2024-02-01

257101 476904 3,932 30 24 29 citations h-index g-index papers 31 31 31 4443 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation. Journal of Biological Chemistry, 2021, 296, 100602.	1.6	24
2	Adsorption of a fabric conditioner on cellulose nanocrystals: synergistic effects of surfactant vesicles and polysaccharides on softness properties. Cellulose, 2021, 28, 2551-2566.	2.4	4
3	Multifunctionalization of cellulose microfibrils through a cascade pathway entailing the sustainable Passerini multi-component reaction. Green Chemistry, 2020, 22, 7059-7069.	4.6	16
4	Linear correlation between specific surface and grafting density of tunable aerogels of microfibrillated cellulose from different origins. Cellulose, 2020, 27, 7979-7995.	2.4	0
5	Deposition of Cellulose Nanocrystals onto Supported Lipid Membranes. Langmuir, 2020, 36, 1474-1483.	1.6	6
6	Ultrastructural Characterization of the Core–Shell Structure of a Wide Range of Periodate-Oxidized Cellulose from Different Native Sources by Solid-State ¹³ C CP-MAS NMR. ACS Sustainable Chemistry and Engineering, 2019, 7, 412-420.	3.2	27
7	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	18.7	690
8	Rubber materials from elastomers and nanocellulose powders: filler dispersion and mechanical reinforcement. Soft Matter, 2018, 14, 2638-2648.	1.2	51
9	Injectable and Gellable Chitosan Formulations Filled with Cellulose Nanofibers for Intervertebral Disc Tissue Engineering. Polymers, 2018, 10, 1202.	2.0	72
10	Periodate Oxidation Followed by NaBH ₄ Reduction Converts Microfibrillated Cellulose into Sterically Stabilized Neutral Cellulose Nanocrystal Suspensions. Langmuir, 2018, 34, 11066-11075.	1.6	33
11	Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields. Advanced Materials, 2017, 29, 1606208.	11.1	126
12	pH-Sensitive Interactions between Cellulose Nanocrystals and DOPC Liposomes. Biomacromolecules, 2017, 18, 2918-2927.	2.6	34
13	Heterogenization of a [NiFe] Hydrogenase Mimic through Simple and Efficient Encapsulation into a Mesoporous MOF. Inorganic Chemistry, 2017, 56, 14801-14808.	1.9	28
14	Quantification of a tightly adsorbed monolayer of xylan on cellulose surface. Cellulose, 2017, 24, 3725-3739.	2.4	38
15	Partial periodate oxidation and thermal cross-linking for the processing of Athermoset Aall-cellulose composites. Composites Science and Technology, 2015, 117, 54-61.	3.8	42
16	Surface-restricted modification of nanocellulose aerogels in gas-phase esterification by di-functional fatty acid reagents. Cellulose, 2015, 22, 1451-1457.	2.4	24
17	Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose, 2015, 22, 3701-3714.	2.4	53
18	First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. Europhysics Letters, 2014, 107, 28006.	0.7	93

#	Article	IF	CITATION
19	Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose, 2014, 21, 4119-4133.	2.4	80
20	Versatile Gas-Phase Reactions for Surface to Bulk Esterification of Cellulose Microfibrils Aerogels. Biomacromolecules, 2013, 14, 3246-3255.	2.6	90
21	Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter, 2013, 9, 11309.	1.2	78
22	Preparation By Grafting Onto, Characterization, and Properties of Thermally Responsive Polymer-Decorated Cellulose Nanocrystals. Biomacromolecules, 2010, 11, 3652-3659.	2.6	213
23	Self-assembling and Chiral Nematic Properties of Organophilic Cellulose Nanocrystals. Journal of Physical Chemistry B, 2009, 113, 11069-11075.	1.2	89
24	Non-Electrostatic Building of Biomimetic Celluloseâ^'Xyloglucan Multilayers. Langmuir, 2009, 25, 3920-3923.	1.6	97
25	Gas-Phase Surface Esterification of Cellulose Microfibrils and Whiskers. Biomacromolecules, 2009, 10, 2144-2151.	2.6	175
26	Structural Details of Cellulose Nanocrystals/Polyelectrolytes Multilayers Probed by Neutron Reflectivity and AFM. Langmuir, 2008, 24, 3452-3458.	1.6	93
27	The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules, 2008, 9, 57-65.	2.6	1,015
28	Orientation of Native Cellulose in an Electric Field. Langmuir, 2006, 22, 4899-4901.	1.6	172
29	Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation. Macromolecules, 2005, 38, 1665-1671.	2.2	338
30	Rodlike Cellulose Whiskers Coated with Surfactant: A Small-Angle Neutron Scattering Characterization. Langmuir, 2002, 18, 3311-3314.	1.6	128