
Stuart H. Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3321453/publications.pdf Version: 2024-02-01

STUADT H TAVIOD

#	Article	IF	CITATIONS
1	Iron‑chromium mixed metal oxides catalyse the oxidative dehydrogenation of propane using carbon dioxide. Catalysis Communications, 2022, 162, 106383.	3.3	4
2	Heterogeneous Trimetallic Nanoparticles as Catalysts. Chemical Reviews, 2022, 122, 6795-6849.	47.7	61
3	The Critical Role of βPdZn Alloy in Pd/ZnO Catalysts for the Hydrogenation of Carbon Dioxide to Methanol. ACS Catalysis, 2022, 12, 5371-5379.	11.2	23
4	The Effect of Potassium Inclusion in a Silver Catalyst for N2O-Mediated Oxidation of Soot in Oxidising Exhaust Gases. Catalysts, 2022, 12, 753.	3.5	0
5	The promoter effect of Nb species on the catalytic performance of Ir-based catalysts for VOCs total oxidation. Journal of Environmental Chemical Engineering, 2022, 10, 108261.	6.7	2
6	The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today, 2021, 381, 76-85.	4.4	11
7	A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions, 2021, 229, 108-130.	3.2	5
8	Characterisation and activity of mixed metal oxide catalysts for the gas-phase selective oxidation of toluene. Catalysis Today, 2021, 363, 73-84.	4.4	5
9	Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H ₂ WO ₄ , H ₃ PO ₄ and H ₂ O ₂ : a route for upgrading heavy oil fractions. New Journal of Chemistry, 2021, 45, 13885-13892.	2.8	1
10	Structure Sensitivity and Hydration Effects in Pt/TiO2 and Pt/TiO2–SiO2 Catalysts for NO and Propane Oxidation. Topics in Catalysis, 2021, 64, 955-964.	2.8	1
11	Gas Phase Glycerol Valorization over Ceria Nanostructures with Well-Defined Morphologies. ACS Catalysis, 2021, 11, 4893-4907.	11.2	13
12	A Career in Catalysis: Graham J. Hutchings. ACS Catalysis, 2021, 11, 5916-5933.	11.2	2
13	Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 6188-6202.	6.7	18
14	Combination of Cu/ZnO Methanol Synthesis Catalysts and ZSM-5 Zeolites to Produce Oxygenates from CO2 and H2. Topics in Catalysis, 2021, 64, 965-973.	2.8	6
15	Methane Oxidation to Methanol in Water. Accounts of Chemical Research, 2021, 54, 2614-2623.	15.6	69
16	Conversion of levulinic acid to levulinate ester biofuels by heterogeneous catalysts in the presence of acetals and ketals. Applied Catalysis B: Environmental, 2021, 293, 120219.	20.2	30
17	Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. Green Chemistry, 2021, 23, 9747-9799.	9.0	66
18	Highly Active Co3O4-Based Catalysts for Total Oxidation of Light C1–C3 Alkanes Prepared by a Simple Soft Chemistry Method: Effect of the Heat-Treatment Temperature and Mixture of Alkanes. Materials, 2021, 14, 7120.	2.9	7

#	Article	IF	CITATIONS
19	The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane. Catalysts, 2021, 11, 1461.	3.5	5
20	Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today, 2020, 342, 32-38.	4.4	38
21	Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts. Catalysis Today, 2020, 357, 3-7.	4.4	8
22	Ceria nanorod supported gold nanoparticles as structured catalysts for the oxidative steam reforming of methanol: Effect of CTAB concentration on physiochemical properties and catalyst performance. Journal of Catalysis, 2020, 392, 254-265.	6.2	11
23	Influence of the Preparation Method of Ag-K/CeO2-ZrO2-Al2O3 Catalysts on Their Structure and Activity for the Simultaneous Removal of Soot and NOx. Catalysts, 2020, 10, 294.	3.5	9
24	CO ₂ Hydrogenation to CH ₃ OH over PdZn Catalysts, with Reduced CH ₄ Production. ChemCatChem, 2020, 12, 6024-6032.	3.7	16
25	Ambient Temperature CO Oxidation Using Palladium–Platinum Bimetallic Catalysts Supported on Tin Oxide/Alumina. Catalysts, 2020, 10, 1223.	3.5	5
26	Glycerol Selective Oxidation to Lactic Acid over AuPt Nanoparticles; Enhancing Reaction Selectivity and Understanding by Support Modification. ChemCatChem, 2020, 12, 3097-3107.	3.7	23
27	Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the role of homogeneous vanadium species. Catalysis Science and Technology, 2020, 10, 4210-4218.	4.1	9
28	Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology, 2020, 10, 2082-2091.	4.1	14
29	Insights into the production of upgraded biofuels using Mgâ€loaded mesoporous ZSMâ€5 zeolites. ChemCatChem, 2020, 12, 5236-5249.	3.7	9
30	Catalysts for Oxidative Destruction of Volatile Organic Compounds. Catalysts, 2020, 10, 343.	3.5	3
31	Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. Journal of Chemical Physics, 2020, 152, 134705.	3.0	21
32	The formation of methanol from glycerol bio-waste over doped ceria-based catalysts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200059.	3.4	2
33	Metal Triflate-Promoted Allylic Substitution Reactions of Cinnamyl Alcohol in the Presence of Orthoesters and Acetals. ACS Omega, 2019, 4, 15985-15991.	3.5	2
34	Efficient Elimination of Chlorinated Organics on a Phosphoric Acid Modified CeO ₂ Catalyst: A Hydrolytic Destruction Route. Environmental Science & Technology, 2019, 53, 12697-12705.	10.0	91
35	Ceria–Zirconia Mixed Metal Oxides Prepared via Mechanochemical Grinding of Carbonates for the Total Oxidation of Propane and Naphthalene. Catalysts, 2019, 9, 475.	3.5	45
36	Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene Volatile Organic Compounds. Applied Catalysis B: Environmental, 2019, 253, 331-340.	20.2	44

#	Article	IF	CITATIONS
37	Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies, 2019, 12, 1359.	3.1	10
38	New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology, 2019, 9, 1464-1475.	4.1	12
39	The Key Role of Nanocasting in Goldâ€based Fe ₂ O ₃ Nanocasted Catalysts for Oxygen Activation at the Metalâ€support Interface. ChemCatChem, 2019, 11, 1915-1927.	3.7	13
40	Low-Temperature Catalytic Selective Oxidation of Methane to Methanol. Green Chemistry and Sustainable Technology, 2019, , 37-59.	0.7	3
41	Dominant Effect of Support Wettability on the Reaction Pathway for Catalytic Wet Air Oxidation over Pt and Ru Nanoparticle Catalysts. ACS Catalysis, 2018, 8, 2730-2734.	11.2	19
42	Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts. Journal of Catalysis, 2018, 360, 187-200.	6.2	4
43	Selective Oxidation of Methane to Methanol Using Supported AuPd Catalysts Prepared by Stabilizer-Free Sol-Immobilization. ACS Catalysis, 2018, 8, 2567-2576.	11.2	99
44	A Kinetic Study of Methane Partial Oxidation over Feâ€ZSMâ€5 Using N ₂ O as an Oxidant. ChemPhysChem, 2018, 19, 402-411.	2.1	31
45	Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. Catalysis Today, 2018, 317, 12-20.	4.4	31
46	Etherification Reactions of Furfuryl Alcohol in the Presence of Orthoesters and Ketals: Application to the Synthesis of Furfuryl Ether Biofuels. ACS Sustainable Chemistry and Engineering, 2018, 6, 4996-5002.	6.7	38
47	Investigating the influence of acid sites in continuous methane oxidation with N ₂ O over Fe/MFI zeolites. Catalysis Science and Technology, 2018, 8, 154-163.	4.1	32
48	The Role of Copper Speciation in the Low Temperature Oxidative Upgrading of Short Chain Alkanes over Cu/ZSMâ€5 Catalysts. ChemPhysChem, 2018, 19, 469-478.	2.1	22
49	Insight into the efficient oxidation of methyl-ethyl-ketone over hierarchically micro-mesostructured Pt/K-(Al)SiO2 nanorod catalysts: Structure-activity relationships and mechanism. Applied Catalysis B: Environmental, 2018, 226, 220-233.	20.2	67
50	Oxidation of Polynuclear Aromatic Hydrocarbons using Rutheniumâ€Ionâ€Catalyzed Oxidation: The Role of Aromatic Ring Number in Reaction Kinetics and Product Distribution. Chemistry - A European Journal, 2018, 24, 655-662.	3.3	9
51	The selective hydrogenation of furfural over supported palladium nanoparticle catalysts prepared by sol-immobilisation: effect of catalyst support and reaction conditions. Catalysis Science and Technology, 2018, 8, 252-267.	4.1	39
52	Nanoporous Aluminosilicate-Catalyzed Telescoped Acetalization-Direct Aldol Reactions of Acetals with 1,3-Dicarbonyl Compounds. ACS Omega, 2018, 3, 15482-15491.	3.5	11
53	The Low Temperature Solvent-Free Aerobic Oxidation of Cyclohexene to Cyclohexane Diol over Highly Active Au/Graphite and Au/Graphene Catalysts. Catalysts, 2018, 8, 311.	3.5	13
54	Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons. Journal of Catalysis, 2018, 364, 102-111.	6.2	12

#	Article	IF	CITATIONS
55	Mechanistic Insights into Selective Oxidation of Polyaromatic Compounds using RICO Chemistry. Chemistry - A European Journal, 2018, 24, 12359-12369.	3.3	7
56	Gold as a Catalyst for the Ring Opening of 2,5-Dimethylfuran. Catalysis Letters, 2018, 148, 2109-2116.	2.6	3
57	Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production. Nanomaterials, 2018, 8, 542.	4.1	8
58	Simultaneous removal of NOx and soot particulate from diesel exhaust by in-situ catalytic generation and utilisation of N2O. Applied Catalysis B: Environmental, 2018, 239, 10-15.	20.2	37
59	Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide. Chemistry - A European Journal, 2017, 23, 11834-11842.	3.3	36
60	Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambientâ€Pressure Waterâ€Gasâ€Shift Copper/Zinc Oxide Catalysts. ChemCatChem, 2017, 9, 1621-1631.	3.7	20
61	A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science, 2017, 8, 2436-2447.	7.4	32
62	Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis, 2017, 354, 236-249.	6.2	22
63	Aqueous Au-Pd colloids catalyze selective CH ₄ oxidation to CH ₃ OH with O ₂ under mild conditions. Science, 2017, 358, 223-227.	12.6	478
64	Carbonization of polymers of intrinsic microporosity to microporous heterocarbon: Capacitive pH measurements. Applied Materials Today, 2017, 9, 136-144.	4.3	11
65	The Lowâ€Temperature Oxidation of Propane by using H ₂ O ₂ and Fe/ZSMâ€5 Catalysts: Insights into the Active Site and Enhancement of Catalytic Turnover Frequencies. ChemCatChem, 2017, 9, 642-650.	3.7	16
66	The effect of sodium species on methanol synthesis and water–gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions, 2017, 197, 287-307.	3.2	33
67	Reflections on Catalytic Selective Oxidation: Opportunities and Challenges. Catalysts, 2017, 7, 34.	3.5	4
68	An Overview of Recent Advances of the Catalytic Selective Oxidation of Ethane to Oxygenates. Catalysts, 2016, 6, 71.	3.5	24
69	Ethanol to 1,3â€Butadiene Conversion by using ZrZnâ€Containing MgO/SiO ₂ Systems Prepared by Coâ€precipitation and Effect of Catalyst Acidity Modification. ChemCatChem, 2016, 8, 2376-2386.	3.7	54
70	Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today, 2016, 272, 74-79.	4.4	15
71	The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions, 2016, 188, 427-450.	3.2	41
72	The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. Catalysis Science and Technology, 2016, 6, 7521-7531.	4.1	12

#	Article	IF	CITATIONS
73	One‧tep Production of 1,3â€Butadiene from 2,3â€Butanediol Dehydration. Chemistry - A European Journal, 2016, 22, 12290-12294.	3.3	39
74	Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. Journal of Physics Condensed Matter, 2016, 28, 106002.	1.8	73
75	Insights into the Reaction Mechanism of Cyclohexane Oxidation Catalysed by Molybdenum Blue Nanorings. Catalysis Letters, 2016, 146, 126-135.	2.6	23
76	The selective oxidation of n-butanol to butyraldehyde by oxygen using stable Pt-based nanoparticulate catalysts: an efficient route for upgrading aqueous biobutanol. Catalysis Science and Technology, 2016, 6, 4201-4209.	4.1	23
77	The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science, 2016, 648, 163-169.	1.9	36
78	Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature, 2016, 531, 83-87.	27.8	128
79	Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catalysis Science and Technology, 2016, 6, 3410-3418.	4.1	64
80	Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catalysis Today, 2016, 270, 93-100.	4.4	113
81	Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today, 2016, 275, 35-39.	4.4	29
82	Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science and Technology, 2016, 6, 2910-2917.	4.1	9
83	Dehydrative Etherification Reactions of Glycerol with Alcohols Catalyzed by Recyclable Nanoporous Aluminosilicates: Telescoped Routes to Glyceryl Ethers. ACS Sustainable Chemistry and Engineering, 2016, 4, 835-843.	6.7	17
84	Silica Supported Platinum Catalysts for Total Oxidation of the Polyaromatic Hydrocarbon Naphthalene: An Investigation of Metal Loading and Calcination Temperature. Catalysts, 2015, 5, 690-702.	3.5	9
85	Co-oxidation of octane and benzaldehyde using molecular oxygen with Au–Pd/carbon prepared by sol-immobilisation. Catalysis Science and Technology, 2015, 5, 3953-3959.	4.1	3
86	Selective Oxidation of Alkylâ€Substituted Polyaromatics Using Rutheniumâ€Ion atalyzed Oxidation. Chemistry - A European Journal, 2015, 21, 4285-4293.	3.3	8
87	Selective Oxidation of Alkyl-Substituted Polyaromatics Using Ruthenium-Ion-Catalyzed Oxidation. Chemistry - A European Journal, 2015, 21, 4169-4169.	3.3	0
88	Methyl Formate Formation from Methanol Oxidation Using Supported Gold–Palladium Nanoparticles. ACS Catalysis, 2015, 5, 637-644.	11.2	78
89	High-Temperature Stable Gold Nanoparticle Catalysts for Application under Severe Conditions: The Role of TiO ₂ Nanodomains in Structure and Activity. ACS Catalysis, 2015, 5, 1078-1086.	11.2	34
90	Nanoporous alumino- and borosilicate-mediated Meinwald rearrangement of epoxides. Applied Catalysis A: General, 2015, 493, 17-24.	4.3	19

#	Article	IF	CITATIONS
91	Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. Catalysis Today, 2015, 254, 12-20.	4.4	32
92	Low temperature catalytic partial oxidation of ethane to oxygenates by Fe– and Cu–ZSM-5 in a continuous flow reactor. Journal of Catalysis, 2015, 330, 84-92.	6.2	24
93	Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Applied Catalysis A: General, 2015, 504, 62-73.	4.3	29
94	Intrinsically Microporous Polymer Retains Porosity in Vacuum Thermolysis to Electroactive Heterocarbon. Langmuir, 2015, 31, 12300-12306.	3.5	25
95	Total oxidation of naphthalene using copper manganese oxide catalysts. Catalysis Today, 2015, 258, 610-615.	4.4	23
96	Efficient green methanol synthesis from glycerol. Nature Chemistry, 2015, 7, 1028-1032.	13.6	106
97	Selective Oxidation of <i>n</i> â€Butanol Using Goldâ€Palladium Supported Nanoparticles Under Baseâ€Free Conditions. ChemSusChem, 2015, 8, 473-480.	6.8	28
98	Mechanochemical synthesis of copper manganese oxide for the ambient temperature oxidation of carbon monoxide. Applied Catalysis B: Environmental, 2015, 165, 222-231.	20.2	53
99	The Catalytic Oxidation of Hydrocarbon Volatile Organic Compounds. , 2014, , 51-90.		4
100	Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry, 2014, 16, 3132-3141.	9.0	71
101	Gold-Based Nanoparticulate Catalysts for the Oxidative Esterification of 1,4-Butanediol to Dimethyl Succinate. Topics in Catalysis, 2014, 57, 723-729.	2.8	5
102	Oxidation of Benzyl Alcohol and Carbon Monoxide Using Gold Nanoparticles Supported on MnO ₂ Nanowire Microspheres. Chemistry - A European Journal, 2014, 20, 1701-1710.	3.3	40
103	The Effect of Grafting Zirconia and Ceria onto Alumina as a Support for Silicotungstic Acid for the Catalytic Dehydration of Glycerol to Acrolein. Chemistry - A European Journal, 2014, 20, 1743-1752.	3.3	36
104	Novel cobalt zinc oxide Fischer–Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science and Technology, 2014, 4, 1970-1978.	4.1	29
105	High Activity Redox Catalysts Synthesized by Chemical Vapor Impregnation. ACS Nano, 2014, 8, 957-969.	14.6	25
106	Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. Catalysis Science and Technology, 2014, 4, 1313-1322.	4.1	34
107	Nanoporous Aluminosilicate-Mediated Synthesis of Ethers by a Dehydrative Etherification Approach. ACS Sustainable Chemistry and Engineering, 2014, 2, 860-866.	6.7	12
108	Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General, 2014, 485, 51-57.	4.3	15

#	Article	IF	CITATIONS
109	Metastable Ionic Diodes Derived from an Amineâ€Based Polymer of Intrinsic Microporosity. Angewandte Chemie - International Edition, 2014, 53, 10751-10754.	13.8	81
110	Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation. Journal of Catalysis, 2014, 317, 167-175.	6.2	34
111	Baseâ€Free Oxidation of Glycerol Using Titania‣upported Trimetallic Au–Pd–Pt Nanoparticles. ChemSusChem, 2014, 7, 1326-1334.	6.8	73
112	Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron, 2014, 70, 6055-6058.	1.9	14
113	Selective deposition of palladium onto supported nickel – bimetallic catalysts for the hydrogenation of crotonaldehyde. Catalysis Science and Technology, 2013, 3, 2746.	4.1	20
114	Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM-5. Journal of the American Chemical Society, 2013, 135, 11087-11099.	13.7	83
115	Systematic Study of the Oxidation of Methane Using Supported Gold Palladium Nanoparticles Under Mild Aqueous Conditions. Topics in Catalysis, 2013, 56, 1843-1857.	2.8	35
116	Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental, 2013, 140-141, 671-679.	20.2	50
117	Au–Pd Core–Shell Nanoparticles as Alcohol Oxidation Catalysts: Effect of Shape and Composition. ChemSusChem, 2013, 6, 1858-1862.	6.8	21
118	Total oxidation of naphthalene at low temperatures using palladium nanoparticles supported on inorganic oxide-coated cordierite honeycomb monoliths. Catalysis Science and Technology, 2013, 3, 2708.	4.1	11
119	Oxidation of Methane to Methanol with Hydrogen Peroxide Using Supported Cold–Palladium Alloy Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 1280-1284.	13.8	239
120	Elucidation and Evolution of the Active Component within Cu/Fe/ZSM-5 for Catalytic Methane Oxidation: From Synthesis to Catalysis. ACS Catalysis, 2013, 3, 689-699.	11.2	117
121	The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today, 2013, 203, 139-145.	4.4	58
122	Gold–Palladium Core–Shell Nanocrystals with Size and Shape Control Optimized for Catalytic Performance. Angewandte Chemie - International Edition, 2013, 52, 1477-1480.	13.8	104
123	Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation. Applied Catalysis B: Environmental, 2013, 132-133, 98-106.	20.2	73
124	Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au–Pd nanoparticles. Catalysis Today, 2013, 203, 146-152.	4.4	57
125	Preparation of Fischer–Tropsch Supported Cobalt Catalysts Using a New Gas Anti-Solvent Process. ACS Catalysis, 2013, 3, 764-772.	11.2	18
126	Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au–Pd–Pt nanoparticles. Faraday Discussions, 2013, 162, 365.	3.2	65

#	Article	IF	CITATIONS
127	Total oxidation of naphthalene using bulk manganese oxide catalysts. Applied Catalysis A: General, 2013, 450, 169-177.	4.3	49
128	Aqueous-Phase Methane Oxidation over Fe-MFI Zeolites; Promotion through Isomorphous Framework Substitution. ACS Catalysis, 2013, 3, 1835-1844.	11.2	99
129	Total oxidation of naphthalene using palladium nanoparticles supported on BETA, ZSM-5, SAPO-5 and alumina powders. Applied Catalysis B: Environmental, 2013, 129, 98-105.	20.2	31
130	Solvent Effect and Reactivity Trend in the Aerobic Oxidation of 1,3â€Propanediols over Gold Supported on Titania: NMR Diffusion and Relaxation Studies. Chemistry - A European Journal, 2013, 19, 11725-11732.	3.3	46
131	Coldâ€Nanoparticleâ€Based Catalysts for the Oxidative Esterification of 1,4â€Butanediol into Dimethyl Succinate. ChemSusChem, 2013, 6, 1952-1958.	6.8	5
132	Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis, 2012, 296, 55-64.	6.2	49
133	The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis, 2012, 55, 1283-1288.	2.8	33
134	Catalytic and Mechanistic Insights of the Lowâ€Temperature Selective Oxidation of Methane over Cuâ€Promoted Feâ€ZSMâ€5. Chemistry - A European Journal, 2012, 18, 15735-15745.	3.3	102
135	Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters, 2012, 142, 1114-1120.	2.6	15
136	Nanoporous aluminosilicate mediated transacetalization reactions: application in glycerol valorization. Catalysis Science and Technology, 2012, 2, 2258.	4.1	14
137	Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science and Technology, 2012, 2, 97-104.	4.1	32
138	Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science, 2012, 3, 2965.	7.4	38
139	Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters, 2012, 142, 1049-1056.	2.6	61
140	Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2012, 127, 77-88.	20.2	70
141	Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials, 2012, 164, 207-213.	4.4	57
142	Synthesis of Stable Ligand-free Gold–Palladium Nanoparticles Using a Simple Excess Anion Method. ACS Nano, 2012, 6, 6600-6613.	14.6	128
143	Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science and Technology, 2012, 2, 105-112.	4.1	174
144	Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copperâ€Promoted Feâ€ZSMâ€5. Angewandte Chemie - International Edition, 2012, 51, 5129-5133.	13.8	492

9

#	Article	IF	CITATIONS
145	High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants. Chemical Communications, 2012, 48, 4704.	4.1	52
146	Involvement of Surfaceâ€Bound Radicals in the Oxidation of Toluene Using Supported Auâ€Pd Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 5981-5985.	13.8	89
147	Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ï‰-alkanediols. Catalysis Today, 2012, 183, 52-57.	4.4	10
148	Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. Journal of Catalysis, 2012, 285, 103-114.	6.2	71
149	Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis, 2012, 286, 206-213.	6.2	106
150	Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. Journal of Catalysis, 2012, 290, 177-185.	6.2	30
151	A Raman investigation into the effect of temperature on ion-induced damage of graphite. Journal of Nuclear Materials, 2012, 426, 26-30.	2.7	4
152	Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem, 2012, 5, 125-131.	6.8	56
153	Pulsed-Field Gradient NMR Spectroscopic Studies of Alcohols in Supported Gold Catalysts. Journal of Physical Chemistry C, 2011, 115, 1073-1079.	3.1	35
154	The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation. Catalysis Science and Technology, 2011, 1, 1367.	4.1	18
155	Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science and Technology, 2011, 1, 740.	4.1	50
156	The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis, 2011, 281, 279-289.	6.2	58
157	Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal, 2011, 175, 271-278.	12.7	64
158	Nanoporous aluminosilicate catalyzed Friedel–Crafts alkylation reactions of indoles with aldehydes and acetals. Green Chemistry, 2011, 13, 2320.	9.0	49
159	Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 2011, 13, 17395.	2.8	19
160	Solvent-Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles. Science, 2011, 331, 195-199.	12.6	708
161	CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics, 2011, 13, 2528-2538.	2.8	28
162	The Influence of Platinum Addition on Nano-Crystalline Ceria Catalysts for the Total Oxidation of Naphthalene a Model Polycyclic Aromatic Hydrocarbon. Catalysis Letters, 2011, 141, 1732-1738.	2.6	14

#	Article	IF	CITATIONS
163	Selective Oxidation of Glycerol by Highly Active Bimetallic Catalysts at Ambient Temperature under Baseâ€Free Conditions. Angewandte Chemie - International Edition, 2011, 50, 10136-10139.	13.8	212
164	Controlling the Duality of the Mechanism in Liquidâ€Phase Oxidation of Benzyl Alcohol Catalysed by Supported Au–Pd Nanoparticles. Chemistry - A European Journal, 2011, 17, 6524-6532.	3.3	100
165	Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 2011, 163, 47-54.	4.4	73
166	Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 2011, 164, 315-319.	4.4	70
167	A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer–Tropsch reaction. Applied Catalysis A: General, 2011, 395, 1-9.	4.3	32
168	The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B: Environmental, 2011, 101, 388-396.	20.2	47
169	Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. Journal of Hazardous Materials, 2011, 187, 544-552.	12.4	80
170	The decomposition of H ₂ O ₂ over the components of Au/TiO ₂ Âcatalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1885-1899.	2.1	35
171	Ion-induced damage in graphite: A Raman study. Journal of Nuclear Materials, 2010, 403, 108-112.	2.7	15
172	Total Oxidation of Naphthalene Using Mesoporous CeO2 Catalysts Synthesized by Nanocasting from Two Dimensional SBA-15 and Three Dimensional KIT-6 and MCM-48 Silica Templates. Catalysis Letters, 2010, 134, 110-117.	2.6	21
173	Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catalysis Letters, 2010, 138, 143-147.	2.6	28
174	TAP studies of CO oxidation over CuMnO and Au/CuMnO catalysts. Journal of Catalysis, 2010, 276, 38-48.	6.2	46
175	Recovery and Reuse of Nanoparticles by Tuning Solvent Quality. ChemSusChem, 2010, 3, 339-341.	6.8	8
176	Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science, 2010, 350, 443-446.	9.4	14
177	Synthesis of nanoporous aluminosilicate materials and their application as highly selective heterogeneous catalysts for the synthesis of β-amino alcohols. Journal of Molecular Catalysis A, 2010, 329, 57-63.	4.8	37
178	The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2010, 93, 395-405.	20.2	62
179	Preface: Catalytic Aspects of Complete Oxidation of Volatile Organic Compounds. Topics in Catalysis, 2009, 52, 457-457.	2.8	8
180	The Catalytic Total Oxidation of Polycyclic Aromatic Hydrocarbons. Topics in Catalysis, 2009, 52, 528-541.	2.8	29

#	Article	IF	CITATIONS
181	Ceria and Gold/Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons: An InÂSitu DRIFTS Study. Topics in Catalysis, 2009, 52, 492-500.	2.8	29
182	The Oxidative Dehydrogenation of Propane Using Vanadium Oxide Supported on Nanocrystalline Ceria. Topics in Catalysis, 2009, 52, 1660-1668.	2.8	25
183	Synthesis and catalytic activity of nanoporous aluminosilicate materials. Journal of Molecular Catalysis A, 2009, 314, 10-14.	4.8	26
184	Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol. Journal of Hazardous Materials, 2009, 171, 393-399.	12.4	24
185	Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity. Journal of Molecular Catalysis A, 2009, 305, 121-124.	4.8	82
186	TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Applied Catalysis A: General, 2009, 365, 222-230.	4.3	50
187	New Nanocrystalline Cu/MnO _{<i>x</i>} Catalysts Prepared from Supercritical Antisolvent Precipitation. ChemCatChem, 2009, 1, 247-251.	3.7	44
188	Ceria prepared using supercritical antisolvent precipitation: a green support for gold–palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry, 2009, 19, 8619.	6.7	88
189	Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry, 2009, 11, 1209.	9.0	97
190	Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates. Organic and Biomolecular Chemistry, 2009, 7, 2559.	2.8	74
191	Deep oxidation of propane using palladium–titania catalysts modified by niobium. Applied Catalysis A: General, 2008, 350, 63-70.	4.3	35
192	Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Applied Catalysis B: Environmental, 2008, 84, 176-184.	20.2	221
193	The role of support on the performance of platinum-based catalysts for the total oxidation of polycyclic aromatic hydrocarbons. Catalysis Today, 2008, 137, 362-366.	4.4	23
194	The influence of cerium to urea preparation ratio of nanocrystalline ceria catalysts for the total oxidation of naphthalene. Catalysis Today, 2008, 137, 373-378.	4.4	19
195	Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications, 2008, , 1707.	4.1	36
196	Purification of chemical feedstocks by the removal of aerial carbonyl sulfide by hydrolysis using rare earth promoted alumina catalysts. Green Chemistry, 2008, 10, 571.	9.0	11
197	Study of Carbon Monoxide Hydrogenation Over Supported Au Catalysts. Studies in Surface Science and Catalysis, 2007, 163, 141-151.	1.5	6
198	Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon. Applied Catalysis B: Environmental, 2007, 76, 248-256.	20.2	68

#	Article	IF	CITATIONS
199	Solvent-free oxidation of benzyl alcohol using titania-supported gold–palladium catalysts: Effect of Au–Pd ratio on catalytic performance. Catalysis Today, 2007, 122, 407-411.	4.4	104
200	Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis, 2007, 249, 208-219.	6.2	82
201	Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Topics in Catalysis, 2007, 44, 123-128.	2.8	53
202	Effect of the addition of Au on Co/TiO2 catalyst for the Fischer–Tropsch reaction. Topics in Catalysis, 2007, 44, 129-136.	2.8	35
203	Complete oxidation of short chain alkanes using a nanocrystalline cobalt oxide catalyst. Catalysis Letters, 2007, 116, 116-121.	2.6	55
204	Intensification of the solvent-free catalytic hydroformylation of cyclododecatriene: Comparison of a stirred batch reactor and a heat-exchange reactor. Catalysis Today, 2007, 128, 18-25.	4.4	15
205	Multiphase hydrogenation of resorcinol in structured and heat exchange reactor systems. Catalysis Today, 2007, 128, 26-35.	4.4	32
206	Nanocrystalline cobalt oxide: a catalyst for selective alkane oxidation under ambient conditions. Chemical Communications, 2006, , 3417-3419.	4.1	68
207	Calculations on the adsorption of Au to MgO surfaces using SIESTA. Journal of Materials Chemistry, 2006, 16, 1978.	6.7	33
208	Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A: General, 2006, 312, 67-76.	4.3	134
209	Naphthalene total oxidation over metal oxide catalysts. Applied Catalysis B: Environmental, 2006, 66, 92-99.	20.2	95
210	Oxidation of Butane to Maleic Anhydride using Vanadium Phosphate Catalysts: Comparison of Operation in Aerobic and Anaerobic Conditions using a Gas-gas Periodic Flow Reactor. Catalysis Letters, 2006, 106, 127-131.	2.6	2
211	Naphthalene oxidation over vanadium-modified Pt catalysts supported on Î ³ -Al2O3. Catalysis Letters, 2006, 110, 125-128.	2.6	27
212	High temperature COS hydrolysis catalysed by \hat{I}^3 -Al2O3. Catalysis Letters, 2006, 110, 243-246.	2.6	30
213	The oxidation of carbon monoxide at ambient temperature over mixed copper–silver oxide catalysts. Catalysis Today, 2006, 114, 357-361.	4.4	18
214	Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds. Applied Catalysis B: Environmental, 2006, 62, 66-76.	20.2	82
215	Preparation of Tio2 Using Supercritical CO2 Antisolvent Precipitation (SAS): A Support for High Activity Gold Catalysts. Studies in Surface Science and Catalysis, 2006, 162, 219-226.	1.5	13
216	Chemically Induced Fast Solid-State Transitions of Â-VOPO4 in Vanadium Phosphate Catalysts. Science, 2006, 313, 1270-1273.	12.6	79

#	Article	IF	CITATIONS
217	A density functional theory study of the adsorption of acetone to the (111) surface of Pt: Implications for hydrogenation catalysis. Catalysis Today, 2005, 105, 85-92.	4.4	43
218	The hydrogenation of isophorone to trimethyl cyclohexanone using the downflow single capillary reactor. Catalysis Today, 2005, 105, 569-573.	4.4	31
219	Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts. Journal of Catalysis, 2005, 229, 1-11.	6.2	70
220	Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis, 2005, 236, 282-291.	6.2	23
221	Ambient temperature oxidation of carbon monoxide using a Cu2Ag2O3 catalyst. Catalysis Letters, 2005, 101, 31-33.	2.6	12
222	COS Hydrolysis Using Zinc-promoted Alumina Catalysts. Catalysis Letters, 2005, 104, 17-21.	2.6	21
223	Nano-crystalline Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons. Catalysis Letters, 2005, 105, 183-189.	2.6	60
224	Experimental Evaluation of a Three-Phase Downflow Capillary Reactor. Industrial & Engineering Chemistry Research, 2005, 44, 6295-6303.	3.7	28
225	The Oxidative Dehydrogenation of Propane Using Gallium–Molybdenum Based Catalysts. Catalysis Letters, 2004, 93, 151-154.	2.6	10
226	Enantioselective Hydrogenation Using Cinchona-Modified Pt/Â-Al2O3Catalysts: Comparison of the Reaction of Ethyl Pyruvate and Buta-2,3-dione. Catalysis Letters, 2004, 96, 147-151.	2.6	16
227	The Oxidative Destruction of Hydrocarbon Volatile Organic Compounds Using Palladium–Vanadia–Titania Catalysts. Catalysis Letters, 2004, 97, 99-103.	2.6	31
228	The oxidative dehydrogenation of propane using gallium–molybdenum oxide-based catalysts. Journal of Molecular Catalysis A, 2004, 220, 77-84.	4.8	18
229	Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using α-Al2O3. New Journal of Chemistry, 2004, 28, 471-476.	2.8	20
230	Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry, 2004, 28, 708.	2.8	40
231	Title is missing!. Catalysis Letters, 2003, 87, 103-108.	2.6	19
232	Synthesis of Methyl Mercaptan and Thiophene from CO/H2/H2S Using Â-Al2O3. Catalysis Letters, 2003, 91, 181-183.	2.6	14
233	A study of methane activation by modified gallium- and zinc-based catalysts. Research on Chemical Intermediates, 2003, 29, 911-920.	2.7	2
234	Silica and boron nitride supported molybdenum and vanadium oxide catalysts for propane oxidation. Catalysis Today, 2003, 81, 179-188.	4.4	24

#	Article	IF	CITATIONS
235	The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catalysis Today, 2003, 84, 113-119.	4.4	43
236	Characterisation of copper-manganese oxide catalysts: effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Applied Catalysis A: General, 2003, 253, 499-508.	4.3	82
237	The partial oxidation of propane to formaldehyde using uranium mixed oxide catalysts. Catalysis Today, 2003, 81, 171-178.	4.4	25
238	Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na+ acting as catalyst poison. Catalysis Communications, 2003, 4, 17-20.	3.3	67
239	Observation of high enantioselectivity for the gas phase hydrogenation of methyl pyruvate using supported Pt catalysts pre-modified with cinchonidineElectronic supplementary information (ESI) available: use of the Kelvin equation and reactant partial pressure to estimate the effective partial pressure for condensation as a function of pore radius. See http://www.rsc.org/suppdata/cc/b3/b304976k/. Chemical Communications, 2003, , 1926.	4.1	24
240	Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity. Physical Chemistry Chemical Physics, 2002, 4, 5915-5920.	2.8	79
241	A study of the methane–deuterium exchange reaction over a range of metal oxides. Applied Catalysis A: General, 2002, 227, 191-200.	4.3	39
242	Title is missing!. Catalysis Letters, 2002, 78, 369-372.	2.6	15
243	A combined experimental and theoretical approach to the study of methane activation over oxide catalysts. Catalysis Today, 2001, 71, 3-10.	4.4	6
244	The role of gallium oxide in methane partial oxidation catalysts: An experimental and theoretical study. Studies in Surface Science and Catalysis, 2001, 136, 319-324.	1.5	2
245	The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catalysis Today, 2000, 59, 249-259.	4.4	92
246	The application of "superacidic―metal oxides and their platinum doped counterparts to methane combustion. Catalysis Today, 2000, 59, 403-409.	4.4	8
247	A study of uranium oxide based catalysts for the oxidative destruction of short chain alkanes. Applied Catalysis B: Environmental, 2000, 25, 137-149.	20.2	37
248	Characterization of Uranium Oxides Using in Situ Micro-Raman Spectroscopy. Applied Spectroscopy, 2000, 54, 1372-1378.	2.2	109
249	Designing heterogeneous oxidation catalysts. Studies in Surface Science and Catalysis, 1999, 121, 85-92.	1.5	2
250	Designing oxidation catalysts. Catalysis Today, 1999, 49, 105-113.	4.4	46
251	A temporal analysis of products study of the mechanism of VOC catalytic oxidation using uranium oxide catalysts. Catalysis Today, 1999, 54, 3-12.	4.4	35
252	A study of "superacidic―MoO3/ZrO2 catalysts for methane oxidation. Catalysis Letters, 1999, 57, 109-113.	2.6	29

#	Article	IF	CITATIONS
253	Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General, 1998, 166, 143-152.	4.3	165
254	The partial oxidation of methane to methanol: An approach to catalyst design. Catalysis Today, 1998, 42, 217-224.	4.4	55
255	A novel approach to the scientific design of oxide catalysts for the partial oxidation of methane to methanol. Studies in Surface Science and Catalysis, 1997, , 41-46.	1.5	2
256	A New Class of Uranium Oxide Based Catalysts for the Oxidative Destruction of Benzene and Butane Volatile Organic Compounds. ACS Symposium Series, 1996, , 58-75.	0.5	14
257	Methane partial oxidation to methanol over Ga2O3 based catalysts: use of the CH4/D2 exchange reaction as a design tool. Chemical Communications, 1996, , 523.	4.1	24
258	From Generic Strategies to Value for Money in Hypercompetitive Environments. Journal of General Management, 1996, 21, 45-61.	1.2	17
259	Ambient temperature CO oxidation using copper manganese oxide catalysts prepared by coprecipitation: effect of ageing on catalyst performance. Catalysis Letters, 1996, 42, 21-24.	2.6	84
260	Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature, 1996, 384, 341-343.	27.8	235
261	Catalytic synthesis of methanol and formaldehyde by partial oxidation of methane. Fuel Processing Technology, 1995, 42, 151-178.	7.2	101
262	An initial strategy for the design of improved catalysts for methane partial oxidation. Applied Catalysis A: General, 1995, 126, 287-296.	4.3	33
263	Preparation, characterisation and activity of an iron/sodalite catalyst for the oxidation of methane to methanol. Topics in Catalysis, 1994, 1, 103-110.	2.8	12
264	Oxidation of alcohols using supported gold and gold–palladium nanoparticles. Faraday Discussions, 0, 145, 341-356.	3.2	128
265	The Over-Riding Role of Autocatalysis in Allylic Oxidation. Catalysis Letters, 0, , 1.	2.6	0
266	Chapter 7. Catalyst preparation using supercritical fluid precipitation. Catalysis, 0, , 218-248.	1.0	3