List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3320829/publications.pdf Version: 2024-02-01

		126907	114465
117	4,372	33	63
papers	citations	h-index	g-index
121	121	121	3731
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PDMS composites with photostable NIR dyes for multi-modal ultrasound imaging. MRS Advances, 2022, 7, 499-503.	0.9	6
2	Deep Learning for Instrumented Ultrasonic Tracking: From Synthetic Training Data to <i>In Vivo</i> Application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 543-552.	3.0	7
3	Ultrasonic Needle Tracking with Dynamic Electronic Focusing. Ultrasound in Medicine and Biology, 2022, 48, 520-529.	1.5	7
4	Neural Network Kalman Filtering for 3-D Object Tracking From Linear Array Ultrasound Data. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1691-1702.	3.0	9
5	Improving needle visibility in LED-based photoacoustic imaging using deep learning with semi-synthetic datasets. Photoacoustics, 2022, 26, 100351.	7.8	12
6	A patient-specific multi-modality abdominal aortic aneurysm imaging phantom. International Journal of Computer Assisted Radiology and Surgery, 2022, , .	2.8	2
7	High-resolution sub-millimetre diameter side-viewing all-optical ultrasound transducer based on a single dual-clad optical fibre. Biomedical Optics Express, 2022, 13, 4047.	2.9	9
8	Broadband All-Optical Plane-Wave Ultrasound Imaging System Based on a Fabry–Perot Scanner. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 1007-1016.	3.0	13
9	Modelling and measurement of laser-generated focused ultrasound: Can interventional transducers achieve therapeutic effects?. Journal of the Acoustical Society of America, 2021, 149, 2732-2742.	1.1	2
10	Precision-Microfabricated Fiber-Optic Probe for Intravascular Pressure and Temperature Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-12.	2.9	11
11	Freehand and video-rate all-optical ultrasound imaging. Ultrasonics, 2021, 116, 106514.	3.9	10
12	CuInS ₂ Quantum Dot and Polydimethylsiloxane Nanocomposites for Allâ€Optical Ultrasound and Photoacoustic Imaging. Advanced Materials Interfaces, 2021, 8, 2100518.	3.7	13
13	Flexible and directional fibre optic ultrasound transmitters using photostable dyes. OSA Continuum, 2021, 4, 2488.	1.8	6
14	Dynamic Characterisation of Fibre-Optic Temperature Sensors for Physiological Monitoring. Sensors, 2021, 21, 221.	3.8	5
15	Robot-Assisted Optical Ultrasound Scanning. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 948-958.	3.2	2
16	Real-time all-optical ultrasound imaging of a dynamic heart valve phantom. , 2021, , .		1
17	CuInS ₂ Quantum Dot and Polydimethylsiloxane Nanocomposites for Allâ€Optical Ultrasound and Photoacoustic Imaging (Adv. Mater. Interfaces 20/2021). Advanced Materials Interfaces, 2021, 8, 2170114.	3.7	0
18	Fibre optic intravascular measurements of blood flow: A review. Sensors and Actuators A: Physical, 2021, 332, 113162.	4.1	2

#	Article	IF	CITATIONS
19	Real-Time Ultrasonic Tracking of an Intraoperative Needle Tip with Integrated Fibre-Optic Hydrophone. , 2021, , .		4
20	Single Sensor Interventional All-Optical Ultrasound Imaging: Beam Characteristics and Bandwidth Performance. , 2021, , .		2
21	Photoacoustic imaging of the human placental vasculature. Journal of Biophotonics, 2020, 13, e201900167.	2.3	36
22	Source Density Apodization: Image Artifact Suppression Through Source Pitch Nonuniformity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 497-504.	3.0	9
23	Refractive Two-View Reconstruction for Underwater 3D Vision. International Journal of Computer Vision, 2020, 128, 1101-1117.	15.6	36
24	TCT CONNECT-373 Optical Ultrasound: A New Imaging Paradigm Allowing Real-Time Visualization of In Situ Fenestration of Aortic Endovascular Grafts During Aneurysm Repair. Journal of the American College of Cardiology, 2020, 76, B160-B161.	2.8	0
25	Optically Generated Ultrasound for Intracoronary Imaging. Frontiers in Cardiovascular Medicine, 2020, 7, 525530.	2.4	5
26	Comparison of manual and semi-automatic registration in augmented reality image-guided liver surgery: a clinical feasibility study. Surgical Endoscopy and Other Interventional Techniques, 2020, 34, 4702-4711.	2.4	29
27	Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance. Optics Letters, 2020, 45, 6238.	3.3	21
28	Patient-Specific Polyvinyl Alcohol Phantom Fabrication with Ultrasound and X-Ray Contrast for Brain Tumor Surgery Planning. Journal of Visualized Experiments, 2020, , .	0.3	7
29	LED-Based Photoacoustic Imaging for Guiding Peripheral Minimally Invasive Procedures. Progress in Optical Science and Photonics, 2020, , 321-334.	0.5	0
30	Multispectral tissue mapping: developing a concept for the optical evaluation of liver disease. Journal of Medical Imaging, 2020, 7, 066001.	1.5	0
31	Real-time and Freehand Multimodal Imaging: Combining White Light Endoscopy with All-Optical Ultrasound. , 2020, , .		1
32	Robotic Control of a Multi-Modal Rigid Endoscope Combining Optical Imaging with All-Optical Ultrasound. , 2019, , .		6
33	A directional fibre optic ultrasound transmitter based on a reduced graphene oxide and polydimethylsiloxane composite. Applied Physics Letters, 2019, 114, 113505.	3.3	30
34	All-Optical Rotational Ultrasound Imaging. Scientific Reports, 2019, 9, 5576.	3.3	47
35	Developing patient-specific carotid artery ultrasound imaging phantoms for clinical training using 3D printing. Clinical Radiology, 2019, 74, e9-e10.	1.1	5
36	Minimally invasive photoacoustic imaging: Current status and future perspectives. Photoacoustics, 2019, 16, 100146.	7.8	89

#	Article	IF	CITATIONS
37	Interventional photoacoustics: using light to sound out the path to safe, effective interventions. Physics in Medicine and Biology, 2019, 64, 220401.	3.0	0
38	Wall-less vascular poly(vinyl) alcohol gel ultrasound imaging phantoms using 3D printed vessels. , 2019, , .		8
39	Large area all-optical ultrasound imaging using robotic control. , 2019, , .		4
40	Use of a flexible optical fibre bundle to interrogate a Fabry–Perot sensor for photoacoustic imaging. Optics Express, 2019, 27, 37886.	3.4	8
41	Versatile and scalable fabrication method for laser-generated focused ultrasound transducers. Optics Letters, 2019, 44, 6005.	3.3	11
42	Dynamic physiological temperature and pressure sensing with phase-resolved low-coherence interferometry. Optics Express, 2019, 27, 5641.	3.4	11
43	Enhancing photoacoustic visualization of medical devices with elastomeric nanocomposite coatings. , 2019, , .		1
44	Haptic Guidance Based on All-Optical Ultrasound Distance Sensing for Safer Minimally Invasive Fetal Surgery. Journal of Medical Robotics Research, 2018, 03, 1841001.	1.2	14
45	Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging. Advanced Functional Materials, 2018, 28, 1704919.	14.9	81
46	Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds. Physics in Medicine and Biology, 2018, 63, 015033.	3.0	52
47	Real-Time, Video-Rate and Depth-Resolved Imaging of Radio-Frequency Ablation Using All-Optical Ultrasound. , 2018, , .		4
48	Microwave Oscillator Ultrasound Receivers. , 2018, , .		0
49	Three-Dimensional Ultrasonic Needle Tip Tracking with a Fiber-Optic Ultrasound Receiver. Journal of Visualized Experiments, 2018, , .	0.3	4
50	Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours. Nature Biomedical Engineering, 2018, 2, 773-787.	22.5	91
51	All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light: Science and Applications, 2018, 7, 75.	16.6	119
52	All-optical dual photoacoustic and optical coherence tomography intravascular probe. Photoacoustics, 2018, 11, 65-70.	7.8	26
53	Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging. Biomedical Optics Express, 2018, 9, 1151.	2.9	51
54	Video-rate all-optical ultrasound imaging. Biomedical Optics Express, 2018, 9, 3481.	2.9	25

#	Article	IF	CITATIONS
55	Handheld Real-Time LED-Based Photoacoustic and Ultrasound Imaging System for Accurate Visualization of Clinical Metal Needles and Superficial Vasculature to Guide Minimally Invasive Procedures. Sensors, 2018, 18, 1394.	3.8	75
56	3D printed micro-scale fiber optic probe for intravascular pressure sensing. , 2018, , .		2
57	Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe. Scientific Reports, 2017, 7, 3674.	3.3	33
58	All-optical endoscopic probe for high resolution 3D photoacoustic tomography. , 2017, , .		5
59	Identification of liver metastases with probeâ€based confocal laser endomicroscopy at two excitation wavelengths. Lasers in Surgery and Medicine, 2017, 49, 280-292.	2.1	12
60	Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nature Photonics, 2017, 11, 714-719.	31.4	255
61	A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging. Scientific Reports, 2017, 7, 1208.	3.3	23
62	Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. Light: Science and Applications, 2017, 6, e17103-e17103.	16.6	90
63	Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite. Applied Physics Letters, 2017, 110, 223701.	3.3	54
64	Notice of Removal: Acoustical characterisation of carbon nanotube-loaded polydimethylsiloxane used for optical ultrasound generation. , 2017, , .		0
65	Identification and removal of laser-induced noise in photoacoustic imaging using singular value decomposition. Biomedical Optics Express, 2017, 8, 68.	2.9	38
66	Acoustical characterisation of carbon nanotube-loaded polydimethylsiloxane used for optical ultrasound generation. , 2017, , .		5
67	Source density apodisation in 2D all-optical ultrasound imaging. , 2017, , .		Ο
68	Ultrasonic Needle Tracking with a Fibre-Optic Ultrasound Transmitter for Guidance of Minimally Invasive Fetal Surgery. Lecture Notes in Computer Science, 2017, 10434, 637-645.	1.3	14
69	Pencil beam all-optical ultrasound imaging. Biomedical Optics Express, 2016, 7, 3696.	2.9	54
70	Construction of 3â€Dimensional Printed Ultrasound Phantoms With Wallâ€less Vessels. Journal of Ultrasound in Medicine, 2016, 35, 1333-1339.	1.7	30
71	Coded excitation ultrasonic needle tracking: An <i>in vivo</i> study. Medical Physics, 2016, 43, 4065-4073.	3.0	21
72	Utilizing confocal laser endomicroscopy for evaluating the adequacy of laparoscopic liver ablation. Lasers in Surgery and Medicine, 2016, 48, 299-310.	2.1	10

#	Article	IF	CITATIONS
73	Carbonâ€Nanotube–PDMS Composite Coatings on Optical Fibers for Allâ€Optical Ultrasound Imaging. Advanced Functional Materials, 2016, 26, 8390-8396.	14.9	120
74	3D Ultrasonic Needle Tracking with a 1.5D Transducer Array for Guidance of Fetal Interventions. Lecture Notes in Computer Science, 2016, 9900, 353-361.	1.3	7
75	A Survey on the Current Status and Future Challenges Towards Objective Skills Assessment in Endovascular Surgery. Journal of Medical Robotics Research, 2016, 01, 1640010.	1.2	9
76	Catheter manipulation analysis for objective performance and technical skills assessment in transcatheter aortic valve implantation. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 1121-1131.	2.8	23
77	Adaptive Light Modulation for Improved Resolution and Efficiency in All-Optical Pulse-Echo Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 83-90.	3.0	21
78	Inâ€plane ultrasonic needle tracking using a fiberâ€optic hydrophone. Medical Physics, 2015, 42, 5983-5991.	3.0	44
79	Fabrication and characterisation of miniature parabolic acoustic lenses. , 2015, , .		1
80	Real-time needle guidance with photoacoustic and laser-generated ultrasound probes. Proceedings of SPIE, 2015, , .	0.8	4
81	Laparoscopic Manipulation of a Probe-based Confocal Laser Endomicroscope Using a Steerable Intravascular Catheter. Surgical Laparoscopy, Endoscopy and Percutaneous Techniques, 2015, 25, e83-e85.	0.8	1
82	Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an <i>ex vivo</i> pilot study. Journal of Biomedical Optics, 2015, 20, 110503.	2.6	43
83	Quantification of light attenuation in optically cleared mouse brains. Journal of Biomedical Optics, 2015, 20, 080503.	2.6	17
84	Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging. Biomedical Optics Express, 2015, 6, 1502.	2.9	99
85	Photoacoustic endoscopy probe using a coherent fibre optic bundle. , 2015, , .		7
86	Interventional Photoacoustic Imaging of the Human Placenta with Ultrasonic Tracking for Minimally Invasive Fetal Surgeries. Lecture Notes in Computer Science, 2015, 9349, 371-378.	1.3	29
87	Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures. Journal of Biomedical Optics, 2015, 20, 1.	2.6	50
88	Photoacoustic endoscopy probe using a coherent fibre-optic bundle. , 2015, , .		5
89	Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures. , 2015, , .		4
90	Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Applied Physics Letters, 2014, 104, .	3.3	101

#	Article	IF	CITATIONS
91	Epidural catheter with integrated light guides for spectroscopic tissue characterization. Biomedical Optics Express, 2013, 4, 2619.	2.9	10
92	<i>In vivo</i> optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm. Journal of the Royal Society Interface, 2013, 10, 20130459.	3.4	69
93	Optical Detection of Vascular Penetration During Nerve Blocks. Regional Anesthesia and Pain Medicine, 2012, 37, 3-7.	2.3	17
94	Epidural needle with embedded optical fibers for spectroscopic differentiation of tissue: ex vivo feasibility study. Biomedical Optics Express, 2011, 2, 1452.	2.9	37
95	Optical Detection of the Brachial Plexus for Peripheral Nerve Blocks. Regional Anesthesia and Pain Medicine, 2011, 36, 350-357.	2.3	26
96	Needle stylet with integrated optical fibers for spectroscopic contrast during peripheral nerve blocks. Journal of Biomedical Optics, 2011, 16, 077004.	2.6	28
97	Identification of the Epidural Space with Optical Spectroscopy. Anesthesiology, 2010, 113, 1406-1418.	2.5	30
98	Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900â€,toâ€,1600â€,nm. Journal of Biomedical Optics, 2010, 15, 037015.	2.6	112
99	Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm. Biomedical Optics Express, 2010, 1, 1432.	2.9	106
100	Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging. IEEE Transactions on Medical Imaging, 2009, 28, 1468-1472.	8.9	42
101	Preliminary Evaluation of Noninvasive Microscopic Imaging Techniques for the Study of Vocal Fold Development. Journal of Voice, 2009, 23, 269-276.	1.5	17
102	Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging. JACC: Cardiovascular Imaging, 2008, 1, 752-761.	5.3	279
103	High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Optics Express, 2008, 16, 1096.	3.4	160
104	Estimation of the scattering coefficients of turbid media using angle-resolved optical frequency-domain imaging. Optics Letters, 2007, 32, 1560.	3.3	17
105	Increased ranging depth in optical frequency domain imaging by frequency encoding. Optics Letters, 2007, 32, 2768.	3.3	16
106	Backscattering spectroscopic contrast with angle-resolved optical coherence tomography. Optics Letters, 2007, 32, 3158.	3.3	12
107	Angle-resolved Optical Coherence Tomography with sequential angular selectivity for speckle reduction. Optics Express, 2007, 15, 6200.	3.4	124
108	Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video). Gastrointestinal Endoscopy, 2007, 65, 898-905.	1.0	192

#	Article	IF	CITATIONS
109	Speckle Reduction in OCT using Massively-Parallel Detection and Frequency-Domain Ranging. Optics Express, 2006, 14, 4736.	3.4	103
110	Comprehensive volumetric optical microscopy in vivo. Nature Medicine, 2006, 12, 1429-1433.	30.7	413
111	Angularly resolved backscattering of light from turbid suspensions of dielectric spheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 102, 139-151.	2.3	2
112	The influences of Ih on temporal summation in hippocampal CA1 pyramidal neurons: a modeling study. Journal of Computational Neuroscience, 2003, 15, 131-142.	1.0	20
113	Instrumentation for Multi-modal Spectroscopic Diagnosis of Epithelial Dysplasia. Technology in Cancer Research and Treatment, 2003, 2, 505-514.	1.9	41
114	Removal of Confounding Effects of Global Signal in Functional MRI Analyses. NeuroImage, 2001, 13, 751-758.	4.2	183
115	Small Amplitude Red Variables in the AAVSO Photoelectric Program: Light Curves and Periods. Publications of the Astronomical Society of the Pacific, 1996, 108, 139.	3.1	31
116	Pulsation Mode Switching in the Small-Amplitude Red Variable W Bootis. Publications of the Astronomical Society of the Pacific, 1996, 108, 847.	3.1	8
117	Studies of Small-Amplitude Red Variables. International Astronomical Union Colloquium, 1995, 155, 401-402.	0.1	0