
Limei Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3320684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, 2022, 124, 100889.	16.0	181
2	Spectrally multiplexed assay using gap enhanced nanoparticle for detection of a myocardial infarction biomarker panel. Analytica Chimica Acta, 2022, 1198, 339562.	2.6	10
3	Printed Ultrastable Bioplasmonic Microarrays for Point-of-Need Biosensing. ACS Applied Materials & Interfaces, 2022, 14, 10729-10737.	4.0	5
4	Wearable plasmonic paper–based microfluidics for continuous sweat analysis. Science Advances, 2022, 8, eabn1736.	4.7	91
5	Electrically Conductive MoS ₂ Reinforced Polyacrylonitrile Nanofibers for Biomedical Applications. Advanced NanoBiomed Research, 2022, 2, .	1.7	6
6	Moldable and transferrable conductive nanocomposites for epidermal electronics. Npj Flexible Electronics, 2022, 6, .	5.1	16
7	Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics. ACS Nano, 2022, 16, 8798-8811.	7.3	24
8	Performance Evaluation of a Wearable Tattoo Electrode Suitable for High-Resolution Surface Electromyogram Recording. IEEE Transactions on Biomedical Engineering, 2021, 68, 1389-1398.	2.5	27
9	Biocompatible Light Guideâ€Assisted Wearable Devices for Enhanced UV Light Delivery in Deep Skin. Advanced Functional Materials, 2021, 31, 2100576.	7.8	26
10	Metal–Organic Frameworks for Preserving the Functionality of Plasmonic Nanosensors. ACS Applied Materials & Interfaces, 2021, 13, 5564-5573.	4.0	13
11	Ultrastable Plasmonic Bioink for Printable Point-Of-Care Biosensors. ACS Applied Materials & Interfaces, 2020, 12, 35977-35985.	4.0	17
12	Bioinspired PDMS–Phosphor–Silicone Rubber Sandwichâ€ S tructure Coatings for Combating Biofouling. Advanced Materials Interfaces, 2020, 7, 1901577.	1.9	28
13	Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chemical Engineering Journal, 2020, 398, 125609.	6.6	145
14	A Microthermal Sensor for Cryoablation Balloons. Journal of Biomechanical Engineering, 2020, 142, .	0.6	1
15	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
16	Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nature Biomedical Engineering, 2019, 3, 194-205.	11.6	253
17	Exploring the antifouling effect of elastic deformation by DEM–CFD coupling simulation. RSC Advances, 2019, 9, 40855-40862.	1.7	6
18	Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nature Biomedical Engineering, 2019, 3, 37-46.	11.6	185

11.1

#	Article	IF	CITATIONS
19	Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nature Biomedical Engineering, 2018, 2, 165-172.	11.6	108
20	Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9542-E9549.	3.3	50
21	Intraoperative monitoring of neuromuscular function with soft, skin-mounted wireless devices. Npj Digital Medicine, 2018, 1, .	5.7	22
22	Advanced approaches for quantitative characterization of thermal transport properties in soft materials using thin, conformable resistive sensors. Extreme Mechanics Letters, 2018, 22, 27-35.	2.0	24
23	Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics. Nanotechnology, 2017, 28, 115703.	1.3	9
24	Flexible and Stretchable 3ï‰ Sensors for Thermal Characterization of Human Skin. Advanced Functional Materials, 2017, 27, 1701282.	7.8	90
25	Fabrication of Plasmonic Nanoparticles on a Wave Shape PDMS Substrate. Plasmonics, 2017, 12, 1627-1631.	1.8	7
26	Sensors: Flexible and Stretchable 3ï‰ Sensors for Thermal Characterization of Human Skin (Adv. Funct.) Tj ETQo	0 0 0 rgB	T /Qverlock 10
27	Bacterial Nanocelluloseâ€Based Flexible Surface Enhanced Raman Scattering Substrate. Advanced Materials Interfaces, 2016, 3, 1600214.	1.9	72
28	Polarization-Dependent Surface-Enhanced Raman Scattering Activity of Anisotropic Plasmonic Nanorattles. Journal of Physical Chemistry C, 2016, 120, 16899-16906.	1.5	18
29	Elastoplastic Deformation of Silk Micro- and Nanostructures. ACS Biomaterials Science and Engineering, 2016, 2, 893-899.	2.6	5
30	Nanocellulose Films: Bacterial Nanocellulose-Based Flexible Surface Enhanced Raman Scattering Substrate (Adv. Mater. Interfaces 15/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
31	Bilayered Biofoam for Highly Efficient Solar Steam Generation. Advanced Materials, 2016, 28, 9400-9407.	11.1	457
32	Epidermal radio frequency electronics for wireless power transfer. Microsystems and Nanoengineering, 2016, 2, 16052.	3.4	72
33	Foams: Bilayered Biofoam for Highly Efficient Solar Steam Generation (Adv. Mater. 42/2016). Advanced	11.1	13

34	Plasmonic Biofoam: A Versatile Optically Active Material. Nano Letters, 2016, 16, 609-616.	4.5	161
35	Plasmonic Nanogels for Unclonable Optical Tagging. ACS Applied Materials & Interfaces, 2016, 8, 4031-4041.	4.0	46
36	Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo.	2.8	112

Nanoscale, 2016, 8, 12639-12647.

#	Article	IF	CITATIONS
37	Nano-CaCO3 as a pH sensitive theranostic platform. , 2016, , .		Ο
38	Bioâ€Enabled Gold Superstructures with Builtâ€in and Accessible Electromagnetic Hotspots. Advanced Healthcare Materials, 2015, 4, 1502-1509.	3.9	21
39	Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers. Scientific Reports, 2015, 5, 7779.	1.6	171
40	3D Printed Programmable Release Capsules. Nano Letters, 2015, 15, 5321-5329.	4.5	140
41	Off-Resonant Gold Superstructures as Ultrabright Minimally Invasive Surface-Enhanced Raman Scattering (SERS) Probes. Chemistry of Materials, 2015, 27, 5678-5684.	3.2	40
42	Size-Dependent Surface Enhanced Raman Scattering Activity of Plasmonic Nanorattles. Chemistry of Materials, 2015, 27, 5261-5270.	3.2	82
43	Selective enhancement of red emission from upconversion nanoparticles via surface plasmon-coupled emission. RSC Advances, 2015, 5, 76825-76835.	1.7	27
44	Protein-protein binding detection with nanoparticle photonic crystal enhanced microscopy (NP-PCEM). , 2014, 2014, 2069-72.		1
45	Bioplasmonic calligraphy for multiplexed label-free biodetection. Biosensors and Bioelectronics, 2014, 59, 208-215.	5.3	26
46	Gold nanocages with built-in artificial antibodies for label-free plasmonic biosensing. Journal of Materials Chemistry B, 2014, 2, 167-170.	2.9	38
47	Single nanoparticle detection using photonic crystal enhanced microscopy. Analyst, The, 2014, 139, 1007-1015.	1.7	80
48	Multiplexed charge-selective surface enhanced Raman scattering based on plasmonic calligraphy. Journal of Materials Chemistry C, 2014, 2, 5438.	2.7	38
49	Probing Distanceâ€Dependent Plasmonâ€Enhanced Nearâ€Infrared Fluorescence Using Polyelectrolyte Multilayers as Dielectric Spacers. Angewandte Chemie - International Edition, 2014, 53, 866-870.	7.2	75
50	Plasmonic Nanorattles with Intrinsic Electromagnetic Hotâ€Spots for Surface Enhanced Raman Scattering. Small, 2014, 10, 4287-4292.	5.2	69
51	Detection of Single Nanoparticles Using Photonic Crystal Enhanced Microscopy. , 2014, , .		Ο
52	Plasmonic Metal-to-Semiconductor Switching in Au Nanorod-ZnO nanocomposite films. ACS Applied Materials & Interfaces, 2013, 5, 7693-7697.	4.0	22
53	Trapping Proteins within Gold Nanoparticle Assemblies: Dynamically Tunable Hot-spots for Nanobiosensing. Plasmonics, 2013, 8, 537-544.	1.8	16
54	Molecular Linker-Mediated Self-Assembly of Gold Nanoparticles: Understanding and Controlling the Dynamics. Langmuir, 2013, 29, 56-64.	1.6	24

#	Article	IF	CITATIONS
55	Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection. Analytical Chemistry, 2013, 85, 3977-3983.	3.2	151
56	Vesicleâ€Mediated Growth of Tubular Branches and Centimeter‣ong Microtubes from a Single Molecule. Small, 2013, 9, 2611-2618.	5.2	3
57	Monitoring Controlled Release of Payload from Gold Nanocages Using Surface Enhanced Raman Scattering. ACS Nano, 2013, 7, 4252-4260.	7.3	100
58	Biomimetic SERS substrate: peptide recognition elements for highly selective chemical detection in chemically complex media. Journal of Materials Chemistry A, 2013, 1, 6543.	5.2	38
59	Hot Spot‣ocalized Artificial Antibodies for Labelâ€Free Plasmonic Biosensing. Advanced Functional Materials, 2013, 23, 1789-1797.	7.8	90
60	Bioplasmonic Paper as a Platform for Detection of Kidney Cancer Biomarkers. Analytical Chemistry, 2012, 84, 9928-9934.	3.2	90
61	Plasmonic paper as a highly efficient SERS substrate. , 2012, , .		6
62	Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity. Langmuir, 2012, 28, 17435-17442.	1.6	110
63	Freezing the self-assembly process of gold nanocrystals. Chemical Communications, 2012, 48, 1677-1679.	2.2	34
64	Plasmonic Planet–Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures. Nano Letters, 2012, 12, 2645-2651.	4.5	196
65	Gold nanorods as nanotransducers to monitor the growth and swelling of ultrathin polymer films. Nanotechnology, 2012, 23, 255502.	1.3	12
66	Nanorod decorated nanowires as highly efficient SERS-active hybrids. Journal of Materials Chemistry, 2011, 21, 15218.	6.7	32
67	Highly Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Plasmonic Nanostructures. Analytical Chemistry, 2011, 83, 8953-8958.	3.2	253
68	Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology, 2011, 22, 275311.	1.3	53
69	Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces. ACS Applied Materials & Interfaces, 2010, 2, 3429-3435.	4.0	319