Jiajie Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3320174/publications.pdf Version: 2024-02-01

Ιιλμε Ζημ

#	Article	IF	CITATIONS
1	First-Principles Calculations on the Diffusion and Electronic Properties of Cul Doped by Cation and Anion. Results in Physics, 2022, , 105595.	2.0	0
2	Structure and role of carbon-related defects in yttrium aluminum garnet. Optical Materials, 2021, 111, 110561.	1.7	8
3	Martensitic transformations of <i>\hat{l}^2</i> -phase in zirconium. Journal of Applied Physics, 2021, 129, .	1.1	3
4	Effect of Carbon Doping on Fâ€Type Defects in YAG and YAG:Ce Crystals. Physica Status Solidi (B): Basic Research, 2021, 258, 2100325.	0.7	5
5	Perovskite Quantum Wells Formation Mechanism for Stable Efficient Perovskite Photovoltaics—A Realâ€Time Phaseâ€Transition Study. Advanced Materials, 2021, 33, e2006238.	11.1	30
6	Reconstructive Phase Transformations in Body entered Cubic Titanium. Physica Status Solidi (B): Basic Research, 2020, 257, 2000193.	0.7	4
7	Dynamic instability of lithiated phosphorene. RSC Advances, 2020, 10, 32259-32264.	1.7	2
8	Structural properties of Lu2SiO5 doped with rare-earth elements. Materials Letters, 2019, 256, 126410.	1.3	4
9	Multistimuliâ€Responsive Display Materials to Encrypt Differentiated Information in Bright and Dark Fields. Advanced Functional Materials, 2019, 29, 1906068.	7.8	79
10	Boosting the Yield of MXene 2D Sheets via a Facile Hydrothermal-Assisted Intercalation. ACS Applied Materials & Interfaces, 2019, 11, 8443-8452.	4.0	178
11	Oxygen Doping Enhanced Lithiation in MgCl ₂ for Battery Applications. Physica Status Solidi (B): Basic Research, 2019, 256, 1900166.	0.7	3
12	Stability and electronic properties of O vacancies and Ce4+ in Lu2SiO5 tuned by C doping. Optical Materials, 2019, 93, 15-18.	1.7	5
13	Condensed Matter in Energy, Environment, and Beyond. Advances in Condensed Matter Physics, 2019, 2019, 1-2.	0.4	0
14	Effect of cation doping on tuning intrinsic defects in Lul3. Journal of Luminescence, 2019, 212, 238-241.	1.5	2
15	Bâ€Ðopingâ€Enhanced Stability of Phosphorene/Graphene Heterostructures. Advanced Theory and Simulations, 2019, 2, 1800176.	1.3	9
16	Highâ€Rate and Ultralong Cycleâ€Life Potassium Ion Batteries Enabled by In Situ Engineering of Yolk–Shell FeS ₂ @C Structure on Graphene Matrix. Advanced Energy Materials, 2018, 8, 1802565.	10.2	207
17	Phosphorene as cathode for metal-ion batteries: Importance of F decoration. Materials Today Energy, 2018, 10, 141-145.	2.5	5
18	Potential of B/Alâ€Doped Silicene Electrodes in Na/Kâ€lon Batteries. Advanced Theory and Simulations, 2018, 1, 1800017.	1.3	12

Jiajie Zhu

#	Article	IF	CITATIONS
19	Effect of Li doping on the O vacancies in Lu2SiO5:Ce phosphors. Materials Letters, 2018, 228, 372-374.	1.3	13
20	Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries. Nano Letters, 2017, 17, 1302-1311.	4.5	118
21	Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602089.	10.2	171
22	Intrinsic Defects and H Doping in WO3. Scientific Reports, 2017, 7, 40882.	1.6	65
23	P and Si functionalized MXenes for metal-ion battery applications. 2D Materials, 2017, 4, 025073.	2.0	62
24	Stress-enhanced lithiation in MAX compounds for battery applications. Applied Materials Today, 2017, 9, 192-195.	2.3	12
25	Functionalized NbS2 as cathode for Li- and Na-ion batteries. Applied Physics Letters, 2017, 111, .	1.5	19
26	Elemental Two-Dimensional Materials Beyond Graphene. ChemistrySelect, 2017, 2, .	0.7	0
27	11. Elemental Two-Dimensional Materials Beyond Graphene. , 2017, , 219-228.		0
28	Silicene: Recent theoretical advances. Applied Physics Reviews, 2016, 3, .	5.5	94
29	S-functionalized MXenes as electrode materials for Li-ion batteries. Applied Materials Today, 2016, 5, 19-24.	2.3	89
30	SnSe ₂ 2D Anodes for Advanced Sodium Ion Batteries. Advanced Energy Materials, 2016, 6, 1601188.	10.2	243
31	Silicene for Na-ion battery applications. 2D Materials, 2016, 3, 035012.	2.0	82
32	CO ₂ capture by Liâ€functionalized silicene. Physica Status Solidi - Rapid Research Letters, 2016, 10, 458-461.	1.2	3
33	Silicene/germanene on MgX ₂ (X = Cl, Br, and I) for Li-ion battery applications. Nanoscale, 2016, 8, 7272-7277.	2.8	61
34	Nb-based MXenes for Li-ion battery applications. Physica Status Solidi - Rapid Research Letters, 2015, 9, 726-729.	1.2	61
35	Silicene on MoS ₂ : role of the van der Waals interaction. 2D Materials, 2015, 2, 045004.	2.0	22
36	Stability and electronic properties of silicene on WSe ₂ . Journal of Materials Chemistry C, 2015, 3, 3946-3953.	2.7	37

Jiajie Zhu

#	Article	IF	CITATIONS
37	Band Gap Opening in Silicene on MgBr ₂ (0001) Induced by Li and Na. ACS Applied Materials & Interfaces, 2014, 6, 19242-19246.	4.0	13
38	Structural and Electronic Properties of Silicene on MgX ₂ (X = Cl, Br, and I). ACS Applied Materials & amp; Interfaces, 2014, 6, 11675-11681.	4.0	55
39	Studies on phase stability, mechanical, optical and electronic properties of a new Gd2CaZnO5 phosphor system for LEDs. CrystEngComm, 2014, 16, 1652.	1.3	10
40	Stability and electronic properties of carbon in α-Al2O3. Journal of Physics and Chemistry of Solids, 2014, 75, 379-383.	1.9	27
41	Stability and electronic properties of polar and non-polar surfaces of Cul. Applied Surface Science, 2013, 268, 87-91.	3.1	11
42	Structural and electronic properties of CuI doped with Zn, Ga and Al. Journal of Physics and Chemistry of Solids, 2013, 74, 1122-1126.	1.9	19
43	First-principles study on stability of Li, Na and Ca in Lu2SiO5. Journal of Luminescence, 2013, 139, 1-5.	1.5	11
44	Phase transition and elastic and optical properties of Lu2SiO5. Optical Materials, 2013, 35, 1659-1663.	1.7	5
45	The phase transition and elastic and optical properties of polymorphs of Cul. Journal of Physics Condensed Matter, 2012, 24, 475503.	0.7	11
46	First-principles calculations of oxygen vacancies and cerium substitution in lutetium pyrosilicate. Journal of Luminescence, 2012, 132, 164-170.	1.5	5