Jiajie Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3320174/publications.pdf

Version: 2024-02-01

393982 264894 1,875 42 46 19 citations h-index g-index papers 46 46 46 3409 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	SnSe ₂ 2D Anodes for Advanced Sodium Ion Batteries. Advanced Energy Materials, 2016, 6, 1601188.	10.2	243
2	Highâ€Rate and Ultralong Cycleâ€Life Potassium Ion Batteries Enabled by In Situ Engineering of Yolk–Shell FeS ₂ @C Structure on Graphene Matrix. Advanced Energy Materials, 2018, 8, 1802565.	10.2	207
3	Boosting the Yield of MXene 2D Sheets via a Facile Hydrothermal-Assisted Intercalation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8443-8452.	4.0	178
4	Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602089.	10.2	171
5	Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries. Nano Letters, 2017, 17, 1302-1311.	4.5	118
6	Silicene: Recent theoretical advances. Applied Physics Reviews, 2016, 3, .	5 . 5	94
7	S-functionalized MXenes as electrode materials for Li-ion batteries. Applied Materials Today, 2016, 5, 19-24.	2.3	89
8	Silicene for Na-ion battery applications. 2D Materials, 2016, 3, 035012.	2.0	82
9	Multistimuliâ€Responsive Display Materials to Encrypt Differentiated Information in Bright and Dark Fields. Advanced Functional Materials, 2019, 29, 1906068.	7.8	79
10	Intrinsic Defects and H Doping in WO3. Scientific Reports, 2017, 7, 40882.	1.6	65
11	P and Si functionalized MXenes for metal-ion battery applications. 2D Materials, 2017, 4, 025073.	2.0	62
12	Nb-based MXenes for Li-ion battery applications. Physica Status Solidi - Rapid Research Letters, 2015, 9, 726-729.	1.2	61
13	Silicene/germanene on MgX $<$ sub $>$ 2 $<$ /sub $>$ (X = Cl, Br, and I) for Li-ion battery applications. Nanoscale, 2016, 8, 7272-7277.	2.8	61
14	Structural and Electronic Properties of Silicene on MgX $<$ sub $>$ 2 $<$ /sub $>$ (X = Cl, Br, and I). ACS Applied Materials & Samp; Interfaces, 2014, 6, 11675-11681.	4.0	55
15	Stability and electronic properties of silicene on WSe ₂ . Journal of Materials Chemistry C, 2015, 3, 3946-3953.	2.7	37
16	Perovskite Quantum Wells Formation Mechanism for Stable Efficient Perovskite Photovoltaicsâ€"A Real‶ime Phase‶ransition Study. Advanced Materials, 2021, 33, e2006238.	11.1	30
17	Stability and electronic properties of carbon in \hat{l}_{\pm} -Al2O3. Journal of Physics and Chemistry of Solids, 2014, 75, 379-383.	1.9	27
18	Silicene on MoS ₂ : role of the van der Waals interaction. 2D Materials, 2015, 2, 045004.	2.0	22

#	Article	IF	CITATIONS
19	Structural and electronic properties of Cul doped with Zn, Ga and Al. Journal of Physics and Chemistry of Solids, 2013, 74, 1122-1126.	1.9	19
20	Functionalized NbS2 as cathode for Li- and Na-ion batteries. Applied Physics Letters, 2017, 111, .	1.5	19
21	Band Gap Opening in Silicene on MgBr ₂ (0001) Induced by Li and Na. ACS Applied Materials & Interfaces, 2014, 6, 19242-19246.	4.0	13
22	Effect of Li doping on the O vacancies in Lu2SiO5:Ce phosphors. Materials Letters, 2018, 228, 372-374.	1.3	13
23	Stress-enhanced lithiation in MAX compounds for battery applications. Applied Materials Today, 2017, 9, 192-195.	2.3	12
24	Potential of B/Alâ€Doped Silicene Electrodes in Na/Kâ€lon Batteries. Advanced Theory and Simulations, 2018, 1, 1800017.	1.3	12
25	The phase transition and elastic and optical properties of polymorphs of Cul. Journal of Physics Condensed Matter, 2012, 24, 475503.	0.7	11
26	Stability and electronic properties of polar and non-polar surfaces of Cul. Applied Surface Science, 2013, 268, 87-91.	3.1	11
27	First-principles study on stability of Li, Na and Ca in Lu2SiO5. Journal of Luminescence, 2013, 139, 1-5.	1.5	11
28	Studies on phase stability, mechanical, optical and electronic properties of a new Gd2CaZnO5 phosphor system for LEDs. CrystEngComm, 2014, 16, 1652.	1.3	10
29	Bâ€Dopingâ€Enhanced Stability of Phosphorene/Graphene Heterostructures. Advanced Theory and Simulations, 2019, 2, 1800176.	1.3	9
30	Structure and role of carbon-related defects in yttrium aluminum garnet. Optical Materials, 2021, 111, 110561.	1.7	8
31	First-principles calculations of oxygen vacancies and cerium substitution in lutetium pyrosilicate. Journal of Luminescence, 2012, 132, 164-170.	1.5	5
32	Phase transition and elastic and optical properties of Lu2SiO5. Optical Materials, 2013, 35, 1659-1663.	1.7	5
33	Phosphorene as cathode for metal-ion batteries: Importance of F decoration. Materials Today Energy, 2018, 10, 141-145.	2.5	5
34	Stability and electronic properties of O vacancies and Ce4+ in Lu2SiO5 tuned by C doping. Optical Materials, 2019, 93, 15-18.	1.7	5
35	Effect of Carbon Doping on Fâ€Type Defects in YAG and YAG:Ce Crystals. Physica Status Solidi (B): Basic Research, 2021, 258, 2100325.	0.7	5
36	Structural properties of Lu2SiO5 doped with rare-earth elements. Materials Letters, 2019, 256, 126410.	1.3	4

#	Article	IF	CITATIONS
37	Reconstructive Phase Transformations in Bodyâ€Centered Cubic Titanium. Physica Status Solidi (B): Basic Research, 2020, 257, 2000193.	0.7	4
38	CO ₂ capture by Liâ€functionalized silicene. Physica Status Solidi - Rapid Research Letters, 2016, 10, 458-461.	1.2	3
39	Oxygen Doping Enhanced Lithiation in MgCl ₂ for Battery Applications. Physica Status Solidi (B): Basic Research, 2019, 256, 1900166.	0.7	3
40	Martensitic transformations of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -phase in zirconium. Journal of Applied Physics, 2021, 129, .	1.1	3
41	Effect of cation doping on tuning intrinsic defects in Lul3. Journal of Luminescence, 2019, 212, 238-241.	1.5	2
42	Dynamic instability of lithiated phosphorene. RSC Advances, 2020, 10, 32259-32264.	1.7	2
43	Elemental Two-Dimensional Materials Beyond Graphene. ChemistrySelect, 2017, 2, .	0.7	O
44	11. Elemental Two-Dimensional Materials Beyond Graphene. , 2017, , 219-228.		0
45	Condensed Matter in Energy, Environment, and Beyond. Advances in Condensed Matter Physics, 2019, 2019, 1-2.	0.4	0
46	First-Principles Calculations on the Diffusion and Electronic Properties of Cul Doped by Cation and Anion. Results in Physics, 2022, , 105595.	2.0	O