Richard B Jackman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3320018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A detailed EIS study of boron doped diamond electrodes decorated with gold nanoparticles for high sensitivity mercury detection. Scientific Reports, 2021, 11, 9505.	3.3	7
2	Normally-OFF Diamond Reverse Blocking MESFET. IEEE Transactions on Electron Devices, 2021, 68, 6279-6285.	3.0	5
3	Probing Electron-Phonon Interactions Away from the Fermi Level with Resonant Inelastic X-Ray Scattering. Physical Review X, 2021, 11, .	8.9	6
4	Influence of temperature on the electrochemical window of boron doped diamond: a comparison of commercially available electrodes. Scientific Reports, 2020, 10, 15707.	3.3	8
5	Machine learning for the prediction of stopping powers. Nuclear Instruments & Methods in Physics Research B, 2020, 478, 21-33.	1.4	10
6	The occupied electronic structure of ultrathin boron doped diamond. Nanoscale Advances, 2020, 2, 1358-1364.	4.6	5
7	Optimizing reactive ion etching to remove sub-surface polishing damage on diamond. Journal of Applied Physics, 2019, 125, 244502.	2.5	14
8	Diamond Etching Beyond 10 μm with Near-Zero Micromasking. Scientific Reports, 2019, 9, 15619.	3.3	15
9	Diamond Electrodes for High Sensitivity Mercury Detection in the Aquatic Environment: Influence of Surface Preparation and Gold Nanoparticle Activity. Electroanalysis, 2019, 31, 1775-1782.	2.9	6
10	Polishing, preparation and patterning of diamond for device applications. Diamond and Related Materials, 2019, 97, 107424.	3.9	38
11	Spontaneous Differentiation of Human Neural Stem Cells on Nanodiamonds. Advanced Biology, 2019, 3, 1800299.	3.0	12
12	Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Scientific Reports, 2018, 8, 3270.	3.3	35
13	Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors. Physical Review Letters, 2018, 120, 046403.	7.8	7
14	Gate Oxide Electrical Stability of p-type Diamond MOS Capacitors. IEEE Transactions on Electron Devices, 2018, 65, 3361-3364.	3.0	12
15	Nanometric diamond delta doping with boron. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600329.	2.4	27
16	Nanoscale, conformal films of graphitic carbon nitride deposited at room temperature: a method for construction of heterojunction devices. Nanoscale, 2017, 9, 16586-16590.	5.6	20
17	Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation. Scientific Reports, 2017, 7, 7307.	3.3	48
18	Investigation of CVD graphene topography and surface electrical properties. Surface Topography: Metrology and Properties, 2016, 4, 025001.	1.6	3

#	Article	IF	CITATIONS
19	Graphene-Nanodiamond Heterostructures and their application to High Current Devices. Scientific Reports, 2015, 5, 13771.	3.3	51
20	Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells. Journal of Neural Engineering, 2015, 12, 066016.	3.5	38
21	Patterning of Nanodiamond Tracks and Nanocrystalline Diamond Films Using a Micropipette for Additive Direct-Write Processing. ACS Applied Materials & Interfaces, 2015, 7, 6490-6495.	8.0	9
22	Graphene diamond-like carbon films heterostructure. Applied Physics Letters, 2015, 106, .	3.3	12
23	Observation of multiple conduction paths in boron δ-doped diamond structures. , 2014, , .		0
24	Neuron Growth on Nanodiamond. RSC Nanoscience and Nanotechnology, 2014, , 195-220.	0.2	1
25	The influence of surface functionalisation on the electrical properties and thermal stability of nanodiamonds. Journal of Applied Physics, 2014, 116, 133705.	2.5	3
26	Boronâ€Đoped Nanocrystalline Diamond Microelectrode Arrays Monitor Cardiac Action Potentials. Advanced Healthcare Materials, 2014, 3, 283-289.	7.6	45
27	Electronic properties of graphene-single crystal diamond heterostructures. Journal of Applied Physics, 2013, 114, 053709.	2.5	12
28	Growth and electrical characterisation of Ĩ-doped boron layers on (111) diamond surfaces. Journal of Applied Physics, 2012, 111, 033710.	2.5	37
29	Boron δ-doped (111) diamond solution gate field effect transistors. Biosensors and Bioelectronics, 2012, 33, 152-157.	10.1	14
30	Nanodiamond-gated silicon ion-sensitive field effect transistor. Applied Physics Letters, 2011, 98, 153507.	3.3	6
31	Next generation brain implant coatings and nerve regeneration via novel conductive nanocomposite development. , 2011, 2011, 3253-7.		13
32	The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials, 2010, 31, 2097-2104.	11.4	126
33	Synthesis of carbon nanotubes on single crystal diamond. Carbon, 2010, 48, 3027-3032.	10.3	11
34	Nanodiamond-coated silicon cantilever array for chemical sensing. Applied Physics Letters, 2010, 97, 093103.	3.3	18
35	Fabrication and characterisation of triangle-faced single crystal diamond micro-cantilevers. Diamond and Related Materials, 2010, 19, 742-747.	3.9	21
36	Nanodiamond-gated diamond field-effect transistor for chemical sensing using hydrogen-induced transfer doping for channel formation. Applied Physics Letters, 2010, 97, 203503.	3.3	2

#	Article	IF	CITATIONS
37	Nanocrystalline diamond as an electronic material: An impedance spectroscopic and Hall effect measurement study. Journal of Applied Physics, 2010, 107, 033716.	2.5	21
38	Electrical properties of monodispersed detonation nanodiamonds. Applied Physics Letters, 2010, 96, .	3.3	26
39	Extreme sensitivity displayed by single crystal diamond deep ultraviolet photoconductive devices. Applied Physics Letters, 2009, 95, 243501.	3.3	15
40	Multiple conduction paths in boron δ-doped diamond structures. Applied Physics Letters, 2009, 94, 052107.	3.3	11
41	Deep UV Photodetectors fabricated from CVD Single Crystal Diamond. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	Ο
42	The influence of ammonia on the electrical properties of detonation nanodiamond. Journal of Applied Physics, 2009, 106, .	2.5	10
43	An impedance spectroscopic investigation of the electrical properties of δ-doped diamond structures. Journal of Applied Physics, 2009, 106, .	2.5	4
44	Growth, electronic properties and applications of nanodiamond. Diamond and Related Materials, 2008, 17, 1080-1088.	3.9	279
45	Electronic properties of homoepitaxial (111) highly boron-doped diamond films. Journal of Applied Physics, 2008, 103, .	2.5	16
46	Electrical properties of aggregated detonation nanodiamonds. Applied Physics Letters, 2008, 93, .	3.3	21
47	Nanocrystalline Diamond as a Dielectric for SOD Applications. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	1
48	Diamond Based Ion-Sensitive Field Effect Transistors for Cellular Biosensing. Materials Research Society Symposia Proceedings, 2006, 956, 1.	0.1	0
49	Dielectric properties of single crystal diamond. Semiconductor Science and Technology, 2005, 20, 296-298.	2.0	11
50	An impedance spectroscopic study of n-type phosphorus-doped diamond. Journal of Applied Physics, 2005, 98, 073701.	2.5	20
51	Homoepitaxial diamond growth for the control of surface conductive carrier transport properties. Journal of Applied Physics, 2004, 96, 3742-3747.	2.5	9
52	n-type conductivity in ultrananocrystalline diamond films. Applied Physics Letters, 2004, 85, 1680-1682.	3.3	152
53	Diamond photocathodes in gaseous environments. Diamond and Related Materials, 2004, 13, 900-903.	3.9	3
54	Ordered growth of neurons on diamond. Biomaterials, 2004, 25, 4073-4078.	11.4	139

#	Article	IF	CITATIONS
55	Analysis of deep traps in 4,4\$prime;-bis(4-dimethylaminostyryl benzene) based light emitting diode devices. Organic Electronics, 2004, 5, 53-58.	2.6	2
56	Diamond growth on hot-filament chemically vapour-deposited diamond for surface conductive device applications. Diamond and Related Materials, 2004, 13, 166-169.	3.9	4
57	Homoepitaxial growth for surface conductive device applications. Diamond and Related Materials, 2004, 13, 325-328.	3.9	9
58	High growth rate MWPECVD of single crystal diamond. Diamond and Related Materials, 2004, 13, 557-560.	3.9	28
59	An insight into neutron detection from polycrystalline CVD diamond films. Diamond and Related Materials, 2004, 13, 791-795.	3.9	21
60	Chapter 6 Diamond-based radiation and photon detectors. Semiconductors and Semimetals, 2004, , 197-309.	0.7	32
61	Spectroscopic impedance study of nanocrystalline diamond films. Journal of Applied Physics, 2003, 94, 7878.	2.5	58
62	DC current and AC impedance measurements on boron-doped single crystalline diamond films. Physica Status Solidi A, 2003, 199, 92-96.	1.7	11
63	Novel in-plane gate devices on hydrogenated diamond surfaces. Physica Status Solidi A, 2003, 199, 56-63.	1.7	13
64	Evidence of an impurity band at an n-GaN/sapphire interface. Diamond and Related Materials, 2003, 12, 1127-1132.	3.9	2
65	Diamond photodetector response to deep UV excimer laser excitation. Diamond and Related Materials, 2003, 12, 677-681.	3.9	8
66	Surface conductivity on hydrogen terminated diamond. Semiconductor Science and Technology, 2003, 18, S34-S40.	2.0	55
67	High carrier mobilities in black diamond. Semiconductor Science and Technology, 2003, 18, S77-S80.	2.0	9
68	Influence of the postplasma process conditions on the surface conductivity of hydrogenated diamond surfaces. Journal of Applied Physics, 2003, 93, 2700-2704.	2.5	30
69	Charge-based deep level transient spectroscopy of phosphorous-doped homoepitaxial diamond. Journal of Applied Physics, 2003, 94, 5832-5843.	2.5	8
70	Acoustic wave properties of CVD diamond. Semiconductor Science and Technology, 2003, 18, S86-S95.	2.0	23
71	The effect of excimer laser etching on thin film diamond. Semiconductor Science and Technology, 2003, 18, S47-S58.	2.0	9
72	MEASUREMENT OF ELECTRICAL ACTIVATION ENERGY IN BLACK CVD DIAMOND USING IMPEDANCE SPECTROSCOPY. International Journal of Modern Physics B, 2002, 16, 4487-4492.	2.0	0

#	Article	IF	CITATIONS
73	Multiple parallel conduction paths observed in depth-profiled n-GaN epilayers. Journal of Applied Physics, 2002, 91, 9835.	2.5	14
74	Charge-based deep-level transient spectroscopy of poly(p phenylenevinylene) light-emitting diodes. , 2002, 4464, 142.		1
75	Influence of the environment on the surface conductivity of chemical vapor deposition diamond. Diamond and Related Materials, 2002, 11, 856-860.	3.9	47
76	Black diamond: a new material for active electronic devices. Diamond and Related Materials, 2002, 11, 396-399.	3.9	17
77	Low temperature properties of the p-type surface conductivity of diamond. Diamond and Related Materials, 2002, 11, 351-354.	3.9	57
78	Imaging deep UV light with diamond-based systems. Diamond and Related Materials, 2002, 11, 433-436.	3.9	23
79	Influence of material properties on the performance of diamond photocathodes. Diamond and Related Materials, 2002, 11, 437-441.	3.9	15
80	Ion implantation of sulphur, boron and nitrogen in diamond: a charge-based deep level transient spectroscopic investigation. Diamond and Related Materials, 2002, 11, 342-346.	3.9	8
81	Determination of Traps in Poly(p-phenylene vinylene) Light Emitting Diodes by Chargebased Deep Level Transient Spectroscopy. Materials Research Society Symposia Proceedings, 2002, 725, 1.	0.1	0
82	Electrical Conduction in Polycrystalline CVD Diamond: Temperature Dependent Impedance Measurements. Physica Status Solidi A, 2002, 193, 462-469.	1.7	20
83	Diamond-Based 1-D Imaging Arrays. Physica Status Solidi A, 2002, 193, 476-481.	1.7	1
84	Hydrogenated Black Diamond: An Electrical Study. Physica Status Solidi A, 2002, 193, 577-584.	1.7	1
85	Diamond photoconductors: operational lifetime and radiation hardness under deep-UV excimer laser irradiation. Diamond and Related Materials, 2001, 10, 715-721.	3.9	25
86	Carrier generation within the surface region of hydrogenated thin film polycrystalline diamond. Diamond and Related Materials, 2001, 10, 423-428.	3.9	26
87	Diamond photodetectors for next generation 157-nm deep-UV photolithography tools. Diamond and Related Materials, 2001, 10, 693-697.	3.9	43
88	Determination of traps in poly(p-phenylene vinylene) light emitting diodes by charge-based deep level transient spectroscopy. Journal of Applied Physics, 2001, 90, 4196-4204.	2.5	35
89	Reactions of xenon difluoride and atomic hydrogen at chemical vapour deposited diamond surfaces. Surface Science, 2001, 488, 335-345.	1.9	14
90	High-speed diamond photoconductors: a solution for high rep-rate deep-UV laser applications. Diamond and Related Materials, 2001, 10, 650-656.	3.9	18

#	Article	IF	CITATIONS
91	An investigation of the surface reactivity of diamond photocathodes with molecular and atomic oxygen species. Diamond and Related Materials, 2001, 10, 710-714.	3.9	18
92	Deep level transient spectroscopy of CVD diamond: the observation of defect states in hydrogenated films. Diamond and Related Materials, 2001, 10, 610-614.	3.9	14
93	<title>Diamond-based deep-UV sensors for lithography applications</title> ., 2001, , .		1
94	High Speed Diamond Photoconductive Devices for UV Detection. Physica Status Solidi A, 2001, 185, 99-106.	1.7	3
95	Influence of Surface Properties on the Quantum Photoyield of Diamond Photocathodes. Physica Status Solidi A, 2001, 186, 227-233.	1.7	5
96	Low Temperature Surface Conductivity of Hydrogenated Diamond. Physica Status Solidi A, 2001, 186, 241-247.	1.7	28
97	Formation of shallow acceptor states in the surface region of thin film diamond. Applied Physics Letters, 2001, 78, 3460-3462.	3.3	36
98	Hydrogen-induced transport properties of holes in diamond surface layers. Applied Physics Letters, 2001, 79, 4541-4543.	3.3	77
99	Diamond Electronics: Defect Passivation for High Performance Photodetector Operation. Physica Status Solidi A, 2000, 181, 121-128.	1.7	2
100	Spatially resolved optical emission spectroscopy of the secondary glow observed during biasing of a microwave plasma. Vacuum, 2000, 56, 15-23.	3.5	5
101	Characterization of acoustic Lamb wave propagation in polycrystalline diamond films by laser ultrasonics. Journal of Applied Physics, 2000, 88, 2984-2993.	2.5	13
102	Diamond deep UV photodetectors: reducing charge decay times for 1-kHz operation. Diamond and Related Materials, 2000, 9, 195-200.	3.9	18
103	Understanding the chemistry of low temperature diamond growth: an investigation into the interaction of chlorine and atomic hydrogen at CVD diamond surfaces. Diamond and Related Materials, 2000, 9, 246-250.	3.9	13
104	Characterisation of the secondary glow region of a biased microwave plasma by optical emission spectroscopy. Diamond and Related Materials, 2000, 9, 305-310.	3.9	4
105	Nucleation and growth of diamond films on single crystal and polycrystalline tungsten substrates. Diamond and Related Materials, 2000, 9, 262-268.	3.9	17
106	Interaction of organo-sulfur compounds with CVD diamond surfaces. Diamond and Related Materials, 2000, 9, 1167-1170.	3.9	1
107	Engineering low resistance contacts on p-type hydrogenated diamond surfaces. Diamond and Related Materials, 2000, 9, 975-981.	3.9	32
108	Field emission from thin film diamond grown using a magnetically enhanced radio frequency plasma source. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 719.	1.6	2

#	Article	IF	CITATIONS
109	A thin-film diamond phototransistor. Applied Physics Letters, 1999, 74, 615-617.	3.3	21
110	Metal–semiconductor–metal photodiodes fabricated from thin-film diamond. Applied Physics Letters, 1999, 74, 3332-3334.	3.3	22
111	Mechanisms of surface conductivity in thin film diamond: Application to high performance devices. Carbon, 1999, 37, 801-805.	10.3	16
112	High-performance devices from surface-conducting thin-film diamond. Carbon, 1999, 37, 817-822.	10.3	9
113	The effect of hydrogen on the electronic properties of CVD diamond films. Thin Solid Films, 1999, 343-344, 623-626.	1.8	26
114	Progress towards high power thin film diamond transistors. Diamond and Related Materials, 1999, 8, 966-971.	3.9	10
115	An optically activated diamond field effect transistor. Diamond and Related Materials, 1999, 8, 946-951.	3.9	14
116	Thin film diamond alpha detectors for dosimetry applications. Diamond and Related Materials, 1999, 8, 952-955.	3.9	23
117	Acoustic wave propagation in free standing CVD diamond: Influence of film quality and temperature. Diamond and Related Materials, 1999, 8, 732-737.	3.9	9
118	Growth of nanocrystalline diamond films for low field electron emission. Diamond and Related Materials, 1999, 8, 768-771.	3.9	34
119	Optimising the electronic and optoelectronic properties of thin-film diamond. Diamond and Related Materials, 1999, 8, 886-891.	3.9	26
120	Fabrication of aluminium nitride/diamond and gallium nitride/diamond SAW devices. Diamond and Related Materials, 1999, 8, 309-313.	3.9	28
121	Hydrogen "doped―thin film diamond field effect transistors for high power applications. Solid-State Electronics, 1998, 42, 2215-2223.	1.4	9
122	Surface studies of the reactivity of methyl, acetylene and atomic hydrogen at CVD diamond surfaces. Surface Science, 1998, 399, 1-14.	1.9	14
123	Photoelectron spectroscopy studies of barium films on diamond with respect to the modification of negative electron affinity characteristics. Diamond and Related Materials, 1998, 7, 651-655.	3.9	9
124	An insight into the mechanism of surface conductivity in thin film diamond. Diamond and Related Materials, 1998, 7, 550-555.	3.9	66
125	Polycrystalline diamond films for acoustic wave devices. Diamond and Related Materials, 1998, 7, 533-539.	3.9	18
126	Enhancement mode metal-semiconductor field effect transistors from thin-film polycrystalline diamond. IEEE Electron Device Letters, 1998, 19, 112-114.	3.9	25

#	Article	IF	CITATIONS
127	High collection efficiency CVD diamond alpha detectors. IEEE Transactions on Nuclear Science, 1998, 45, 370-373.	2.0	22
128	CVD Diamond for Ultraviolet and Particle Detectors. , 1998, , 305-328.		0
129	Diamond UV photodetectors: Sensitivity and speed for visible blind applications. Diamond and Related Materials, 1998, 7, 513-518.	3.9	83
130	Reactive chemistry of C2Hx species on CVD diamond. Diamond and Related Materials, 1998, 7, 243-246.	3.9	2
131	High-performance metal-semiconductor field effect transistors from thin-film polycrystalline diamond. Diamond and Related Materials, 1998, 7, 565-568.	3.9	23
132	High carrier mobility in polycrystalline thin film diamond. Applied Physics Letters, 1998, 72, 353-355.	3.3	110
133	<title>Diamond photodetectors for UV laser-based applications</title> . , 1998, 3484, 182.		4
134	A thin film diamondp-channel field-effect transistor. Applied Physics Letters, 1997, 70, 339-341.	3.3	19
135	Thin Film Diamond Field Effect Transistors For High Power Applications. Materials Research Society Symposia Proceedings, 1997, 483, 63.	0.1	2
136	Diamond growth chemistry: Its observation using real time in situ molecular beam scattering techniques. Diamond and Related Materials, 1997, 6, 219-223.	3.9	2
137	Photoconductive properties of thin film diamond. Diamond and Related Materials, 1997, 6, 374-380.	3.9	69
138	Tuning the electron affinity of CVD diamond with adsorbed caesium and oxygen layers. Diamond and Related Materials, 1997, 6, 874-878.	3.9	31
139	Biased enhanced nucleation of diamond on metals: an OES and electrical investigation. Diamond and Related Materials, 1997, 6, 658-663.	3.9	10
140	High temperature polycrystalline diamond metal-insulator-semiconductor field-effect-transistor. Diamond and Related Materials, 1997, 6, 333-338.	3.9	16
141	Enhancing low field electron emission from polycrystalline diamond. Diamond and Related Materials, 1997, 6, 869-873.	3.9	13
142	Optimising control of microwave plasma bias enhanced nucleation for heteroepitaxial chemical vapour deposition diamond. Diamond and Related Materials, 1997, 6, 676-680.	3.9	6
143	Thin film diamond metal-insulator field effect transistor for high temperature applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 46, 124-128. 	3.5	2
144	Thin film diamond UV photodetectors: photodiodes compared with photoconductive devices for highly selective wavelength response. Diamond and Related Materials, 1996, 5, 829-834.	3.9	39

#	Article	IF	CITATIONS
145	Growth studies of thin film diamond using molecular beam techniques. Diamond and Related Materials, 1996, 5, 231-235.	3.9	13
146	Laser projection patterning for the formation of thin film diamond microstructures. Diamond and Related Materials, 1996, 5, 317-320.	3.9	9
147	Dopant incorporation mechanisms during the growth of thin film diamond. Diamond and Related Materials, 1996, 5, 378-382.	3.9	8
148	Thin film diamond photodiode for ultraviolet light detection. Applied Physics Letters, 1996, 68, 290-292.	3.3	61
149	Growth and mechanistic studies of diamond formation by chemical beam epitaxy using methyl and acetylene precursors. Journal of Crystal Growth, 1996, 164, 208-213.	1.5	9
150	UV Photodetectors from Thin Film Diamond. Physica Status Solidi A, 1996, 154, 445-454.	1.7	27
151	Cleaning thinâ€film diamond surfaces for device fabrication: An Auger electron spectroscopic study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2303-2307.	2.1	58
152	Microwave plasma characteristics during biasâ€enhanced nucleation of diamond: An optical emission spectroscopic study. Journal of Applied Physics, 1996, 80, 3710-3716.	2.5	8
153	A High Performance UV Photodetector from Thin Film Diamond. Materials Research Society Symposia Proceedings, 1995, 416, 419.	0.1	8
154	Development of chemical beam epitaxy for the deposition of gallium nitride. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 29, 78-82.	3.5	41
155	Chemical vapour deposition of diamond from a novel capacitively coupled r.f. plasma source. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 29, 216-219.	3.5	2
156	High temperature stability of chemically vapour deposited diamond diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 29, 223-227.	3.5	11
157	Diamond chemical vapor deposition from a capacitively coupled radio frequency plasma. Applied Physics Letters, 1995, 66, 1018-1020.	3.3	19
158	Polycrystalline diamond photoconductive device with high UVâ€visible discrimination. Applied Physics Letters, 1995, 67, 2117-2119.	3.3	102
159	The interaction of azomethane with Si(100). Surface Science, 1995, 341, 92-102.	1.9	16
160	The growth of nucleation layers for high-quality diamond CVD from an r.f. plasma. Diamond and Related Materials, 1995, 4, 735-739.	3.9	10
161	Aluminum and nickel contact metallizations on thin film diamond. Journal of Applied Physics, 1995, 78, 2877-2879.	2.5	10
162	A route for the formation of CH2 species during diamond CVD. Diamond and Related Materials, 1995, 4, 740-744.	3.9	7

#	Article	IF	CITATIONS
163	Interaction of hydrogen with chemical vapor deposition diamond surfaces: A thermal desorption study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 3033-3039.	2.1	19
164	Dry etching techniques for GaAs ultra-high vacuum chamber integrated processing. Microelectronic Engineering, 1994, 25, 287-292.	2.4	0
165	A comparative study of the adsorption of hot filament activated hydrocarbons on silicon, gallium arsenide and CVD diamond. Diamond and Related Materials, 1994, 3, 706-710.	3.9	3
166	Capacitively coupled r.f. plasma sources: a viable approach for CVD diamond growth?. Diamond and Related Materials, 1994, 3, 602-607.	3.9	15
167	The interaction of atomic hydrogen with adsorbed ethylene and acetylene on Si(100). Surface Science, 1994, 315, 69-80.	1.9	17
168	Ion beam-assisted etching of semiconductors: surface chemistry vs surface physics. Vacuum, 1993, 44, 239-243.	3.5	5
169	Novel precursors for chemically assisted ion beam etching : reactions of dichloroethane on GaAs (100). Vacuum, 1993, 44, 249-256.	3.5	4
170	Chemical etching of GaAs with a novel low energy ion beam source : A low damage process for device fabrication. Vacuum, 1993, 44, 257-261.	3.5	1
171	The initial stages of diamond growth: an adsorption study of hot filament activated methane and hydrogen on Si(100). Surface Science, 1993, 292, 47-60.	1.9	14
172	Ultra-Low Damage Chemical Etching of GaAs with a Novel Ion Beam Source. Materials Research Society Symposia Proceedings, 1992, 268, 35.	0.1	0
173	Surface Chemical Routes to Low Contamination Beam Assisted GaAs Etching. Materials Research Society Symposia Proceedings, 1992, 279, 587.	0.1	0
174	The Role of Ion Beam Assisted Surface Chemistry in Etching: Adsorption and Reactions of ALKYL Halides. Materials Research Society Symposia Proceedings, 1992, 268, 23.	0.1	1
175	Surface Spectroscopic Studies of the Initial Stages of Diamond Growth on Si(100). Materials Research Society Symposia Proceedings, 1992, 282, 677.	0.1	0
176	Diamond-like carbon within microelectronics: Dielectric properties on silicon and GaAs. Diamond and Related Materials, 1992, 1, 895-899.	3.9	7
177	Ion/Neutral Beam Assisted Etching of Semiconductors: Chemical Modifications of the Adsorbed Phase. Materials Research Society Symposia Proceedings, 1991, 223, 61.	0.1	1
178	Chemical routes to GaAs etching with low-energy ion beams. Journal of Physics Condensed Matter, 1991, 3, S179-S186.	1.8	22
179	Chemical Precursors for GaAs Etching with low Energy ion Beams: Chlorine adsorption on GaAs(100). Materials Research Society Symposia Proceedings, 1991, 223, 215.	0.1	4
180	Surface studies of the interaction of Cl2 with InP(100)(4 × 2); an investigation of adsorption, thermal etching and ion beam assisted processes. Surface Science, 1990, 227, 197-207.	1.9	26

#	Article	IF	CITATIONS
181	Thermal and ion-beam-induced etching of InP with chlorine. Journal of Physics Condensed Matter, 1989, 1, SB179-SB180.	1.8	1
182	Surface spectroscopic and molecular beam studies of the reactions of trimethylaluminium on Si(100). Journal of Physics Condensed Matter, 1989, 1, SB145-SB148.	1.8	2
183	Adsorption, etching and photo-induced reactions at the Si(100)-CCl4interface. Journal of Physics Condensed Matter, 1989, 1, SB181-SB182.	1.8	5
184	Geometric optimisation for the deposition of high temperature superconductors. Applied Surface Science, 1989, 43, 382-386.	6.1	6
185	Semiconductor surface etching by halogens: Fundamental steps. Applied Surface Science, 1989, 36, 296-312.	6.1	50
186	Ion beam assisted etching of silicon with bromine. Applied Surface Science, 1989, 43, 439-446.	6.1	11
187	Thermal and photochemical vapour deposition of Fe from Fe(CO)5 on Si(100). Surface Science, 1989, 209, 151-158.	1.9	39
188	The interaction of WF6 with Si(100); thermal and photon induced reactions. Surface Science, 1988, 201, 47-58.	1.9	14
189	Insituxâ€ray photoemission studies of the oxidation of Yâ€Baâ€Cu films. Journal of Applied Physics, 1988, 64, 6799-6802.	2.5	2
190	Reaction mechanisms for the photon-enhanced etching of semiconductors: An investigation of the UV-stimulated interaction of chlorine with Si(100). Surface Science, 1986, 176, 183-192.	1.9	101
191	Studies of adsorption and electron-induced dissociation of Fe(CO)5 on Si(100). Surface Science, 1986, 171, 197-207.	1.9	40
192	Electron beam stimulated chemical vapor deposition of patterned tungsten films on Si(100). Applied Physics Letters, 1986, 49, 196-198.	3.3	19
193	Laser chemical vapor deposition of patterned Fe on silica glass: Observation and origins of periodic ripple structures. Journal of Applied Physics, 1986, 59, 2031-2034.	2.5	24
194	Diamond Nanowire Transistor with High Current Capability. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100622.	1.8	1