List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/331963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science and Technology, 2021, 114, 70-82.	7.8	160
2	Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage. Food Chemistry, 2017, 214, 702-709.	4.2	157
3	Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry, 2022, 375, 131738.	4.2	115
4	Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD. Food Chemistry, 2018, 242, 131-138.	4.2	112
5	Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydrate Polymers, 2011, 84, 1165-1168.	5.1	104
6	Rapid, accurate, and simultaneous measurement of water and oil contents in the fried starchy system using low-field NMR. Food Chemistry, 2017, 233, 525-529.	4.2	97
7	Influence of β-cyclodextrin on the short-term retrogradation of rice starch. Food Chemistry, 2009, 116, 54-58.	4.2	84
8	Effect of dietary fibers on the structure and digestibility of fried potato starch: A comparison of pullulan and pectin. Carbohydrate Polymers, 2019, 215, 47-57.	5.1	81
9	Inhibition of wheat starch retrogradation by tea derivatives. Carbohydrate Polymers, 2015, 134, 413-417.	5.1	75
10	Effect of high hydrostatic pressure (HHP) on slowly digestible properties of rice starches. Food Chemistry, 2014, 152, 225-229.	4.2	62
11	Highly branched corn starch: Preparation, encapsulation, and release of ascorbic acid. Food Chemistry, 2021, 343, 128485.	4.2	61
12	Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin. Food Hydrocolloids, 2018, 77, 911-920.	5.6	59
13	Simultaneous saccharification and fermentation of broken rice: an enzymatic extrusion liquefaction pretreatment for Chinese rice wine production. Bioprocess and Biosystems Engineering, 2013, 36, 1141-1148.	1.7	58
14	Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages. International Journal of Biological Macromolecules, 2014, 69, 382-387.	3.6	58
15	Identification and releasing characteristics of high-amylose corn starch–cinnamaldehyde inclusion complex prepared using ultrasound treatment. Carbohydrate Polymers, 2013, 91, 586-589.	5.1	56
16	Surface Chemical Compositions and Dispersity of Starch Nanocrystals Formed by Sulfuric and Hydrochloric Acid Hydrolysis. PLoS ONE, 2014, 9, e86024.	1.1	52
17	Synthesis, characterization and hydrophobicity of silylated starch nanocrystal. Carbohydrate Polymers, 2016, 136, 1203-1208.	5.1	51
18	Impact of granule size on microstructural changes and oil absorption of potato starch during frying. Food Hydrocolloids, 2019, 94, 428-438.	5.6	51

#	Article	IF	CITATIONS
19	Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocolloids, 2021, 110, 106141.	5.6	50
20	Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process. Food Chemistry, 2018, 240, 165-173.	4.2	49
21	Evaluation of starch retrogradation by infrared spectroscopy. Food Hydrocolloids, 2021, 120, 106975.	5.6	48
22	Eco-friendly and superhydrophobic nano-starch based coatings for self-cleaning application and oil-water separation. Carbohydrate Polymers, 2021, 271, 118410.	5.1	46
23	Aqueous re-dispersibility of starch nanocrystal powder improved by sodium hypochlorite oxidation. Food Hydrocolloids, 2016, 52, 29-37.	5.6	45
24	Structural changes of chemically modified rice starch by one-step reactive extrusion. Food Chemistry, 2019, 288, 354-360.	4.2	44
25	Effect of reaction solvents on the multi-scale structure of potato starch during acid treatment. International Journal of Biological Macromolecules, 2017, 97, 67-75.	3.6	43
26	Mechanism of effect of endogenous/exogenous rice protein and its hydrolysates on rice starch digestibility. International Journal of Biological Macromolecules, 2021, 193, 311-318.	3.6	43
27	Preparation and characterization of carboxymethyl starch microgel with different crosslinking densities. Carbohydrate Polymers, 2015, 124, 245-253.	5.1	42
28	Amylose crystal seeds: Preparation and their effect on starch retrogradation. Food Hydrocolloids, 2020, 105, 105805.	5.6	41
29	A novel tripleâ€wavelength colorimetric method for measuring amylose and amylopectin contents. Starch/Staerke, 2010, 62, 508-516.	1.1	40
30	Effect of Multiple Freezing/Thawing Cycles on the Structural and Functional Properties of Waxy Rice Starch. PLoS ONE, 2015, 10, e0127138.	1.1	40
31	Type III Resistant Starch Prepared from Debranched Starch: Structural Changes under Simulated Saliva, Gastric, and Intestinal Conditions and the Impact on Short-Chain Fatty Acid Production. Journal of Agricultural and Food Chemistry, 2021, 69, 2595-2602.	2.4	40
32	Effect of β-cyclodextrin on the long-term retrogradation of rice starch. European Food Research and Technology, 2009, 228, 743-748.	1.6	38
33	Stabilization of starch-based microgel-lysozyme complexes using a layer-by-layer assembly technique. Food Chemistry, 2017, 214, 213-217.	4.2	37
34	Effects of fractionation and heat-moisture treatment on structural changes and digestibility of debranched waxy maize starch. Food Hydrocolloids, 2020, 101, 105488.	5.6	37
35	Nanostarch: Preparation, Modification, and Application in Pickering Emulsions. Journal of Agricultural and Food Chemistry, 2021, 69, 6929-6942.	2.4	37
36	Effect of amino acids composing rice protein on rice starch digestibility. LWT - Food Science and Technology, 2021, 146, 111417.	2.5	37

#	Article	IF	CITATIONS
37	Eco-Friendly and pH-Responsive Nano-Starch-Based Superhydrophobic Coatings for Liquid-Food Residue Reduction and Freshness Monitoring. ACS Sustainable Chemistry and Engineering, 2021, 9, 10142-10153.	3.2	37
38	Thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels. Carbohydrate Polymers, 2015, 124, 124-130.	5.1	35
39	Preparation of the β-cyclodextrin-vitamin C (β-CD-Vc) inclusion complex under high hydrostatic pressure (HHP). Carbohydrate Polymers, 2012, 90, 1193-1196.	5.1	34
40	lonic liquids as novel solvents for biosynthesis of octenyl succinic anhydride-modified waxy maize starch. International Journal of Biological Macromolecules, 2016, 86, 119-125.	3.6	34
41	Impact of amylose content on structural changes and oil absorption of fried maize starches. Food Chemistry, 2019, 287, 28-37.	4.2	34
42	Structural modification and functional improvement of starch nanoparticles using vacuum cold plasma. International Journal of Biological Macromolecules, 2020, 145, 197-206.	3.6	33
43	Pasting, rheology, and fine structure of starch for waxy rice powder with high-temperature baking. International Journal of Biological Macromolecules, 2020, 146, 620-626.	3.6	33
44	Effect of pullulan on oil absorption and structural organization of native maize starch during frying. Food Chemistry, 2020, 309, 125681.	4.2	32
45	Resistant structure of extruded starch: Effects of fatty acids with different chain lengths and degree of unsaturation. Food Chemistry, 2022, 374, 131510.	4.2	30
46	The formation of starch-lipid complexes by microwave heating. Food Chemistry, 2022, 382, 132319.	4.2	30
47	Effect of temperature-cycled retrogradation on slow digestibility of waxy rice starch. International Journal of Biological Macromolecules, 2012, 51, 1024-1027.	3.6	28
48	Long-term annealing of C-type kudzu starch: Effect on crystalline type and other physicochemical properties. Starch/Staerke, 2015, 67, 577-584.	1.1	27
49	Interactions between rice amylose and aroma compounds and their effect on rice fragrance release. Food Chemistry, 2019, 289, 603-608.	4.2	27
50	Impact of phase separation of soy protein isolate/sodium alginate co-blending mixtures on gelation dynamics and gels properties. Carbohydrate Polymers, 2015, 125, 169-179.	5.1	26
51	Synthesis of pH- and ionic strength-responsive microgels and their interactions with lysozyme. International Journal of Biological Macromolecules, 2015, 79, 392-397.	3.6	26
52	Effect of acid-ethanol treatment and debranching on the structural characteristics and digestible properties of maize starches with different amylose contents. Food Hydrocolloids, 2017, 69, 229-235.	5.6	26
53	Facile Method for Fluorescent Labeling of Starch Nanocrystal. ACS Sustainable Chemistry and Engineering, 2017, 5, 3751-3761.	3.2	26
54	A simple and green method for preparation of non-crystalline granular starch through controlled gelatinization. Food Chemistry, 2019, 274, 268-273.	4.2	26

#	Article	IF	CITATIONS
55	The role of protein and its hydrolysates in regulating the digestive properties of starch: A review. Trends in Food Science and Technology, 2022, 125, 54-65.	7.8	26
56	Effect of annealing and heat-moisture pretreatments on the oil absorption of normal maize starch during frying. Food Chemistry, 2021, 353, 129468.	4.2	25
57	Effects of starchy seed crystals on the retrogradation of rice starch. Food Chemistry, 2020, 318, 126487.	4.2	23
58	Characterization of Different Substituted Carboxymethyl Starch Microgels and Their Interactions with Lysozyme. PLoS ONE, 2014, 9, e114634.	1.1	23
59	Highâ€pressure homogenization induced degradation of amylopectin in a gelatinized state. Starch/Staerke, 2016, 68, 734-741.	1.1	21
60	Impact of cooling rates on the flavor of cooked rice during storage. Food Bioscience, 2020, 35, 100563.	2.0	21
61	Structure and properties of soft rice starch. International Journal of Biological Macromolecules, 2020, 157, 10-16.	3.6	21
62	Super Anti-Wetting Colorimetric Starch-Based Film Modified with Poly(dimethylsiloxane) and Micro-/Nano-Starch for Aquatic-Product Freshness Monitoring. Biomacromolecules, 2021, 22, 3769-3779.	2.6	21
63	Highly branched dextrin prepared from high-amylose maize starch using waxy rice branching enzyme (WRBE). Food Chemistry, 2016, 203, 530-535.	4.2	20
64	Modelling and optimisation of enzymatic extrusion pretreatment of broken rice for rice wine manufacture. Food Chemistry, 2014, 150, 94-98.	4.2	19
65	Sol–gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4–chitosan) nanoparticles improves thermal and operational stability. Bioprocess and Biosystems Engineering, 2017, 40, 821-831.	1.7	19
66	High-efficiency production of γ-cyclodextrin using β-cyclodextrin as the donor raw material by cyclodextrin opening reactions using recombinant cyclodextrin glycosyltransferase. Carbohydrate Polymers, 2018, 182, 75-80.	5.1	19
67	Analysis of porous structure of potato starch granules by low-field NMR cryoporometry and AFM. International Journal of Biological Macromolecules, 2021, 173, 307-314.	3.6	19
68	Preparation, characterization, and in vitro release of carboxymethyl starch/β-cyclodextrin microgel–ascorbic acid inclusion complexes. RSC Advances, 2015, 5, 61815-61820.	1.7	18
69	Superhydrophobic/superoleophilic starch-based cryogels coated by silylated porous starch/Fe3O4 hybrid micro/nanoparticles for removing discrete oil patches from water. Separation and Purification Technology, 2022, 291, 120872.	3.9	17
70	A novel molecular simulation method for evaluating the endothermic transition of amylose recrystallite. European Food Research and Technology, 2009, 229, 853-858.	1.6	16
71	Interaction between amylose and 1-butanol during 1-butanol-hydrochloric acid hydrolysis of normal rice starch. International Journal of Biological Macromolecules, 2013, 61, 329-332.	3.6	16
72	Starch sodium dodecenyl succinate prepared by one-step extrusion and its properties. Carbohydrate Polymers, 2015, 133, 90-93.	5.1	16

#	Article	IF	CITATIONS
73	Superhydrophobic starch-based nanocomposite cryogel for oil removal underwater and magnetically guided oil slick cleanup. Carbohydrate Polymers, 2022, 287, 119297.	5.1	16
74	Comparison tests of hydroxylpropyl β-cyclodextrin (HPβ-CD) and β-cyclodextrin (β-CD) on retrogradation of rice amylose. LWT - Food Science and Technology, 2010, 43, 488-491.	2.5	15
75	Effects of cooling rate on retrograded nucleation of different rice starch-aromatic molecule complexes. Food Chemistry, 2019, 294, 179-186.	4.2	15
76	Preparation and characterization of zwitterionic functionalized starch nanoparticles. International Journal of Biological Macromolecules, 2020, 142, 395-403.	3.6	15
77	Contribution of starch to the flavor of rice-based instant foods. Critical Reviews in Food Science and Nutrition, 2022, 62, 8577-8588.	5.4	15
78	Superhydrophobic modular cryogel with variable magnetic-actuated motion direction for discrete small-scale oil spill cleanup. Journal of Hazardous Materials, 2022, 430, 128448.	6.5	15
79	Fabrication of superhydrophobic/oleophilic starch cryogel via a simple sol-gel immersion process for removing oil from water. Industrial Crops and Products, 2022, 184, 115010.	2.5	14
80	Characterization and mechanism of action of Microbacterium imperiale glucan 1,4-α-maltotriohydrolase. Carbohydrate Research, 2014, 384, 46-50.	1.1	13
81	Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue. Molecules, 2017, 22, 1824.	1.7	13
82	Comparison of encapsulation properties of major garlic oil components by hydroxypropyl β-cyclodextrin. European Food Research and Technology, 2010, 231, 519-524.	1.6	12
83	A glycogen branching enzyme from <i>Thermomonospora curvata</i> : Characterization and its action on maize starch. Starch/Staerke, 2016, 68, 355-364.	1.1	12
84	Effects of structure and physical chemistry of resistant starch on short-term satiety. Food Hydrocolloids, 2022, 132, 107828.	5.6	12
85	A study on the inhibition mechanism of β-cyclodextrin on pullulanase. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 70, 161-165.	1.6	11
86	Use of the resistance effect between retrograded starch and iodine for evaluating retrogradation properties of rice starch. Food Chemistry, 2011, 125, 1291-1293.	4.2	11
87	Interactions between recrystallized rice starch and flavor molecules. Food Hydrocolloids, 2022, 124, 107271.	5.6	11
88	The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Critical Reviews in Food Science and Nutrition, 2023, 63, 12126-12135.	5.4	11
89	Effects of <i>α</i> â€maltotriohydrolase hydrolysis prior to debranching on the structure and digestibility of normal maize starch. Starch/Staerke, 2017, 69, 1600078.	1.1	10
90	Effect of Drying Processes on the Fine Structure of Aâ€, Bâ€, and Câ€Type Starches. Starch/Staerke, 2018, 70, 1700218.	1.1	10

#	Article	IF	CITATIONS
91	Improved Catalytic Properties of Thermomyces lanuginosus Lipase Immobilized onto Newly Fabricated Polydopamine-Functionalized Magnetic Fe3O4 Nanoparticles. Processes, 2020, 8, 629.	1.3	10
92	Preparative fractionation of dextrin by polyethylene glycol: Effects of initial dextrin concentration and pH. Journal of Chromatography A, 2017, 1530, 226-231.	1.8	9
93	In Vitro Digestibility and Predicted Glycemic Index of Chemically Modified Rice Starch by One‧tep Reactive Extrusion. Starch/Staerke, 2020, 72, 1900012.	1.1	9
94	Facile fabrication of thermostable and colorimetric starch-based waterproof coating with edible organic materials. Food Chemistry, 2022, 382, 132269.	4.2	9
95	Photoirradiation surface molecularly imprinted polymers for the separation of 6â€ <i>O</i> â€i±â€ <scp>d</scp> â€maltosylâ€i²â€cyclodextrin. Journal of Separation Science, 2017, 40, 4653-46	60 ³	8
96	1â€Butanolâ€Hydrochloric Acid Hydrolysis of Highâ€Amylose Maize Starch. Starch/Staerke, 2018, 70, 1700359.	1.1	8
97	Superhydrophobic starch-based adsorbent with honeycomb coral-like surface fabricated via facile immersion process for removing oil from water. International Journal of Biological Macromolecules, 2022, 207, 549-558.	3.6	8
98	Molecular characterization and in vitro digestibility of normal maize starch hydrolyzed by maltotriohydrolase. International Journal of Biological Macromolecules, 2015, 74, 283-288.	3.6	7
99	Fractionation of dextrin by gradient polyethylene glycol precipitation. Journal of Chromatography A, 2016, 1434, 81-90.	1.8	7
100	Thermal and crystalline properties of slowly digestible starch prepared from the starches physically modified by β yclodextrins. Starch/Staerke, 2017, 69, 1500370.	1.1	7
10	Dextrin-uricase conjugate: Preparation, characterization, and enzymatic properties. International Journal of Biological Macromolecules, 2018, 111, 28-32.	3.6	7
102	Highly Efficient Regioselective Decanoylation of Hyperoside Using Nanobiocatalyst of 2 Fe3O4@PDA-Thermomyces lanuginosus Lipase: Insights of Kinetics and Stability Evaluation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 485.	2.0	7
103	 Preparation and characterization of non-crystalline granular starch with low processing viscosity. International Journal of Biological Macromolecules, 2022, 195, 483-491. 	3.6	7
104	Identification and releasing characteristics of β-cyclodextrin–phenylethanoid glycosides inclusion complex. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 79, 437-442.	0.9	6
10	Effect of cooling rate on long-term recrystallized crystal of rice starch in the presence of flavor compounds. Food Chemistry, 2021, 345, 128763.	4.2	6
100	Rheological characterization of pHâ€responsive carboxymethyl starch/βâ€cyclodextrin microgels. Starch/Staerke, 2016, 68, 29-36.	1.1	4
107	Designing Lipaseâ€Compatible Ionic Liquids as Novel Solvents for Starch Ester Biosynthesis. Starch/Staerke, 2020, 72, 1900120.	1.1	4
108	Pasting and Rheological Properties of Nonâ€Crystalline Granular Starch. Starch/Staerke, 2019, 71, 1800338.	1.1	3

#	Article	IF	CITATIONS
109	Physicochemical properties of rice bran after ball milling. Journal of Food Processing and Preservation, 2021, 45, e15785.	0.9	3
110	Superhydrophobic starch-based cryogels modified with silylated magnetic nanoparticles for oil spill cleanup. Journal of Cleaner Production, 2022, 363, 132492.	4.6	3
111	Debranched starch: Preparation and hydrophobic cavity characterization using carbon nanotubes. LWT - Food Science and Technology, 2022, 153, 112548.	2.5	2
112	Multi-wavelength colorimetric determination of large-ring cyclodextrin content for the cyclization activity of 4-α-glucanotransferase. Carbohydrate Polymers, 2015, 122, 329-335.	5.1	1
113	Preparative fractionation of dextrin by gradient alcohol precipitation. Separation Science and Technology, 2017, , 1-11.	1.3	1
114	Applications in Pharmaceuticals. , 2018, , 109-142.		0

Applications in Pharmaceuticals. , 2018, , 109-142. 114