
Huang Xiaodan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3319616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano, 2016, 10, 4579-4586.	7.3	374
2	Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 2012, 24, 4419-4423.	11.1	350
3	A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 2011, 196, 5402-5407.	4.0	335
4	Porous Graphene Nanoarchitectures: An Efficient Catalyst for Low Charge-Overpotential, Long Life, and High Capacity Lithium–Oxygen Batteries. Nano Letters, 2014, 14, 3145-3152.	4.5	329
5	Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Scientific Reports, 2015, 5, 7629.	1.6	234
6	A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. Journal of Electroanalytical Chemistry, 2011, 650, 209-213.	1.9	217
7	Tailored Yolk–Shell Sn@C Nanoboxes for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2017, 27, 1606023.	7.8	173
8	Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific Reports, 2014, 4, 6007.	1.6	165
9	Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Research, 2014, 7, 85-94.	5.8	163
10	3D Hyperbranched Hollow Carbon Nanorod Architectures for Highâ€Performance Lithium‧ulfur Batteries. Advanced Energy Materials, 2014, 4, 1301761.	10.2	154
11	Coreâ€Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultraâ€large Cavity for Protein Delivery. Small, 2015, 11, 5949-5955.	5.2	140
12	Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy, 2015, 16, 268-280.	8.2	132
13	Synthesis of Magnesium Oxide Hierarchical Microspheres: A Dual-Functional Material for Water Remediation. ACS Applied Materials & Interfaces, 2015, 7, 21278-21286.	4.0	124
14	Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. Journal of Materials Chemistry A, 2014, 2, 16199-16207.	5.2	116
15	A Facile Oneâ€Step Solvothermal Synthesis of SnO ₂ /Graphene Nanocomposite and Its Application as an Anode Material for Lithiumâ€Ion Batteries. ChemPhysChem, 2011, 12, 278-281.	1.0	111
16	Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium–O ₂ batteries and oil adsorption applications. Journal of Materials Chemistry A, 2014, 2, 7973-7979.	5.2	108
17	Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 13484.	5.2	103
18	Polypyrroleâ€Coated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithiumâ€lon Batteries. Small, 2016, 12, 3732-3737.	5.2	102

HUANG XIAODAN

#	Article	IF	CITATIONS
19	Hollow Mesoporous Carbon Nanocubes: Rigidâ€Interfaceâ€Induced Outward Contraction of Metalâ€Organic Frameworks. Advanced Functional Materials, 2018, 28, 1705253.	7.8	100
20	Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production. Scientific Reports, 2014, 4, 7557.	1.6	93
21	Rechargeable aluminum–selenium batteries with high capacity. Chemical Science, 2018, 9, 5178-5182.	3.7	87
22	Hierarchical macroporous/mesoporous NiCo ₂ O ₄ nanosheets as cathode catalysts for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 12053.	5.2	82
23	Encapsulation of α-Fe ₂ O ₃ nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale, 2015, 7, 3270-3275.	2.8	82
24	Porous graphene wrapped CoO nanoparticles for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2015, 3, 5402-5408.	5.2	79
25	Layered graphene/mesoporous carbon heterostructures with improved mesopore accessibility for high performance capacitive deionization. Journal of Materials Chemistry A, 2018, 6, 14272-14280.	5.2	77
26	Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries. Journal of Membrane Science, 2014, 472, 133-140.	4.1	75
27	In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica–polymer composites for ultra-high level in-cavity adsorption. Journal of Materials Chemistry A, 2016, 4, 9063-9071.	5.2	73
28	Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behavior. ACS Applied Materials & Interfaces, 2016, 8, 25306-25312.	4.0	69
29	Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. Journal of Materials Chemistry A, 2017, 5, 19416-19421.	5.2	68
30	Mo _{<i>x</i>} W _{1â^'<i>x</i>} O ₃ ·0.33H ₂ O Solid Solutions with Tunable Band Gaps. Journal of Physical Chemistry C, 2010, 114, 20947-20954.	1.5	64
31	Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Research, 2017, 10, 605-617.	5.8	63
32	Selfâ€Assembling Synthesis of Freeâ€standing Nanoporous Graphene–Transitionâ€Metal Oxide Flexible Electrodes for Highâ€Performance Lithiumâ€ion Batteries and Supercapacitors. Chemistry - an Asian Journal, 2014, 9, 206-211.	1.7	62
33	An optimized LiNO3/DMSO electrolyte for high-performance rechargeable Li–O2 batteries. RSC Advances, 2014, 4, 11115.	1.7	60
34	A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 514, 76-80.	2.8	59
35	Macroporous Materials as Novel Catalysts for Efficient and Controllable Proteolysis. Analytical Chemistry, 2009, 81, 5749-5756.	3.2	57
36	Designed synthesis of LiMn ₂ O ₄ microspheres with adjustable hollow structures for lithium-ion battery applications. Journal of Materials Chemistry A, 2013, 1, 837-842.	5.2	56

HUANG XIAODAN

#	Article	IF	CITATIONS
37	Controllable Adsorption of Reduced Graphene Oxide onto Self-Assembled Alkanethiol Monolayers on Gold Electrodes: Tunable Electrode Dimension and Potential Electrochemical Applications. Journal of Physical Chemistry C, 2010, 114, 4389-4393.	1.5	55
38	Graphene Nanosheets Modified Glassy Carbon Electrode as a Highly Sensitive and Selective Voltammetric Sensor for Rutin. Electroanalysis, 2010, 22, 2399-2406.	1.5	45
39	Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. Nano Research, 2016, 9, 3725-3734.	5.8	45
40	Thermal Reductive Perforation of Graphene Cathode for Highâ€Performance Aluminumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2010569.	7.8	41
41	A Smart Glycolâ€Ðirected Nanodevice from Rationally Designed Macroporous Materials. Chemistry - A European Journal, 2010, 16, 822-828.	1.7	38
42	Modulating Ion Diffusivity and Electrode Conductivity of Carbon Nanotube@Mesoporous Carbon Fibers for High Performance Aluminum–Selenium Batteries. Small, 2019, 15, e1904310.	5.2	33
43	Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production. Materials Chemistry Frontiers, 2018, 2, 1334-1342.	3.2	31
44	Superstructured Macroporous Carbon Rods Composed of Defective Graphitic Nanosheets for Efficient Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2100120.	5.6	31
45	Mg(OH) ₂ –MgO@reduced graphene oxide nanocomposites: the roles of composition and nanostructure in arsenite sorption. Journal of Materials Chemistry A, 2017, 5, 24484-24492.	5.2	26
46	A General Approach to Direct Growth of Oriented Metal–Organic Framework Nanosheets on Reduced Graphene Oxides. Advanced Science, 2020, 7, 1901480.	5.6	25
47	Rattle-type magnetic mesoporous hollow carbon as a high-performance and reusable adsorbent for water treatment. Chemosphere, 2017, 166, 109-117.	4.2	24
48	Fast Capture of Fluoride by Anion-Exchange Zirconium–Graphene Hybrid Adsorbent. Langmuir, 2019, 35, 6861-6869.	1.6	24
49	Pore size-optimized periodic mesoporous organosilicas for the enrichment of peptides and polymers. RSC Advances, 2013, 3, 14466.	1.7	23
50	Kinetically Controlled Assembly of Nitrogenâ€Doped Invaginated Carbon Nanospheres with Tunable Mesopores. Chemistry - A European Journal, 2016, 22, 14962-14967.	1.7	21
51	Self-assembly of monodispersed silica nano-spheres with a closed-pore mesostructure. Journal of Materials Chemistry, 2012, 22, 11523.	6.7	18
52	An Approach to Prepare Polyethylenimine Functionalized Silica-Based Spheres with Small Size for siRNA Delivery. ACS Applied Materials & Interfaces, 2014, 6, 15626-15631.	4.0	17
53	Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 654-658.	7.2	16
54	<scp>Nanobiopesticides</scp> : Silica nanoparticles with spiky surfaces enable dual adhesion and enhanced performance. EcoMat, 2020, 2, e12028.	6.8	16

HUANG XIAODAN

#	Article	IF	CITATIONS
55	Single-Layered Mesoporous Carbon Sandwiched Graphene Nanosheets for High Performance Ionic Liquid Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 23947-23954.	1.5	12
56	A silanol protection mechanism: Understanding the decomposition behavior of surfactants in mesostructured solids. Journal of Materials Research, 2011, 26, 804-814.	1.2	11
57	Solvothermal-assisted evaporation-induced self-assembly of ordered mesoporous alumina with improved performance. Journal of Colloid and Interface Science, 2018, 529, 432-443.	5.0	10
58	Elaborate control over the morphology and pore structure of porous silicas for VOCs removal with high efficiency and stability. Adsorption, 2017, 23, 37-50.	1.4	9
59	Large scale synthesis of self-assembled shuttlecock-shaped silica nanoparticles with minimized drag as advanced catalytic nanomotors. Chemical Engineering Journal, 2021, 417, 127971.	6.6	9
60	Modulating the Void Space of Nitrogenâ€Doped Hollow Mesoporous Carbon Spheres for Lithiumâ€ S ulfur Batteries. ChemNanoMat, 2020, 6, 925-929.	1.5	7
61	Hierarchical Porous Nitrogenâ€Doped Sprayâ€Dried Graphene for High Performance Capacitive Deionization. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	7
62	New Insight into Ordered Cage-Type Mesostructures and Their Pore Size Determination by Electron Tomography. Langmuir, 2015, 31, 2545-2553.	1.6	6
63	A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length. Langmuir, 2018, 34, 5011-5019.	1.6	6
64	Engineering mesoporous silica microspheres as hyper-activation supports for continuous enzymatic biodiesel production. Materials Chemistry Frontiers, 2019, 3, 1816-1822.	3.2	6
65	Nitrogen-Doped Mesoporous Carbon Microspheres by Spray Drying-Vapor Deposition for High-Performance Supercapacitor. Frontiers in Chemistry, 2020, 8, 592904.	1.8	6
66	Calcium-Doped Silica Nanoparticles Mixed with Phosphate-Doped Silica Nanoparticles for Rapid and Stable Occlusion of Dentin Tubules. ACS Applied Nano Materials, 2021, 4, 8761-8769.	2.4	4
67	Batteries: 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries (Adv. Energy Mater. 8/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	2
68	Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures. Angewandte Chemie, 2018, 130, 662-666.	1.6	1
69	Rücktitelbild: Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures (Angew. Chem. 3/2018). Angewandte Chemie, 2018, 130, 862-862.	1.6	Ο