Connie M Westhoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3319513/publications.pdf

Version: 2024-02-01

279487 233125 2,185 61 23 45 citations h-index g-index papers 62 62 62 1581 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors. Blood, 2013, 122, 1062-1071.	0.6	394
2	American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support. Blood Advances, 2020, 4, 327-355.	2.5	241
3	It's time to phase in <i><scp>RHD</scp></i> genotyping for patients with a serologic weak <scp>D</scp> phenotype. Transfusion, 2015, 55, 680-689.	0.8	157
4	The Structure and Function of the Rh Antigen Complex. Seminars in Hematology, 2007, 44, 42-50.	1.8	127
5	Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. Transfusion, 2016, 56, 743-754.	0.8	81
6	RH genotype matching for transfusion support in sickle cell disease. Blood, 2018, 132, 1198-1207.	0.6	79
7	International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology: Report of the Dubai, Copenhagen and Toronto meetings. Vox Sanguinis, 2019, 114, 95-102.	0.7	75
8	Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study. Lancet Haematology,the, 2018, 5, e241-e251.	2.2	70
9	Erythroid transcription factor EKLF/KLF1 mutation causing congenital dyserythropoietic anemia type IV in a patient of Taiwanese origin: Review of all reported cases and development of a clinical diagnostic paradigm. Blood Cells, Molecules, and Diseases, 2013, 51, 71-75.	0.6	68
10	Monoclonal antiâ€CD47 interference in red cell and platelet testing. Transfusion, 2019, 59, 730-737.	0.8	65
11	Whole-exome sequencing for RH genotyping and alloimmunization risk in children with sickle cell anemia. Blood Advances, 2017, 1, 1414-1422.	2.5	64
12	Blood group genotyping. Blood, 2019, 133, 1814-1820.	0.6	63
13	DIIIa and DIII Type 5 are encoded by the same allele and are associated with altered RHCE*ce alleles: clinical implications. Transfusion, 2010, 50, 1303-1311.	0.8	53
14	Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes. Blood, 2003, 101, 1194-1199.	0.6	49
15	Financial implications of <i>RHD</i> genotyping of pregnant women with a serologic weak D phenotype. Transfusion, 2015, 55, 2095-2103.	0.8	47
16	Protein 4.2 is critical to CD47-membrane skeleton attachment in human red cells. Blood, 2004, 103, 1131-1136.	0.6	44
17	Molecular biology of the Rh system: clinical considerations for transfusion in sickle cell disease. Hematology American Society of Hematology Education Program, 2009, 2009, 178-184.	0.9	37
18	Rh complexities: serology and DNA genotyping. Transfusion, 2007, 47, 17S-22S.	0.8	35

#	Article	IF	CITATIONS
19	Automated typing of red blood cell and platelet antigens from whole exome sequences. Transfusion, 2019, 59, 3253-3263.	0.8	32
20	Development and validation of a universal blood donor genotyping platform: a multinational prospective study. Blood Advances, 2020, 4, 3495-3506.	2.5	31
21	Development and evaluation of a transfusion medicine genome wide genotyping array. Transfusion, 2019, 59, 101-111.	0.8	30
22	The Rh and RhAG blood group systems. Immunohematology, 2010, 26, 178-186.	0.2	29
23	It's time to phase out "serologic weak D phenotype―and resolve D types with <i>RHD</i> genotyping including weak D type 4. Transfusion, 2020, 60, 855-859.	0.8	27
24	<scp><i>RHCE*ceMO</i></scp> is frequently in cis to <scp><i>RHD*DAUO</i></scp> and encodes a <scp>hr^S</scp> â€", <scp>hr^S</scp> â€", <scp>RH</scp> :â€"61 phenotype in black persons: clinical significance. Transfusion, 2013, 53, 2983-2989.	0.8	23
25	Review: the Rh blood group D antigen dominant, diverse, and difficult. Immunohematology, 2005, 21, 155-163.	0.2	22
26	How do I manage Rh typing in obstetric patients?. Transfusion, 2015, 55, 470-474.	0.8	21
27	<i>RHCE</i> * <i>ceTI</i> encodes partial c and partial e and is often in cis to <i>RHD</i> * <i>DIVa</i> Transfusion, 2013, 53, 741-746.	0.8	19
28	Molecular Genotyping in Transfusion Medicine. Clinical Chemistry, 2008, 54, 1948-1950.	1.5	17
29	<i>RHCE*ceAG</i> (254C>G, Ala85Gly) is prevalent in blacks, encodes a partial ceâ€phenotype, and is associated with discordant <i>RHD</i> zygosity. Transfusion, 2015, 55, 2624-2632.	0.8	17
30	DNA analysis for donor screening of Dombrock blood group antigens. Immunohematology, 2003, 19, 73-76.	0.2	16
31	A new hybrid RHCE gene (CeNR) is responsible for expression of a novel antigen. Transfusion, 2004, 44, 1047-1051.	0.8	13
32	RHD Zygosity Determination from Whole Genome Sequencing Data. Journal of Blood Disorders $\&$ Transfusion, 2016, 7, .	0.1	13
33	Nucleotide deletion in RHCE*cE (907delC) is responsible for a D-â€ f - haplotype in Hispanics. Transfusion, 2011, 51, 2142-2147.	0.8	12
34	Application of genomics for transfusion therapy in sickle cell anemia. Blood Cells, Molecules, and Diseases, 2017, 67, 148-154.	0.6	12
35	Multiple <i>GYPB</i> gene deletions associated with the Uâ^ phenotype in those of African ancestry. Transfusion, 2020, 60, 1294-1307.	0.8	12
36	Accurate long-read sequencing allows assembly of the duplicated RHD and RHCE genes harboring variants relevant to blood transfusion. American Journal of Human Genetics, 2022, 109, 180-191.	2.6	11

#	Article	IF	Citations
37	The "next generation―reference laboratory?. Transfusion, 2018, 58, 277-279.	0.8	10
38	Experience with RHD*weak D type 4.0 in the USA. Blood Transfusion, 2019, 17, 91-93.	0.3	10
39	Novel mutations in <i>KLF1</i> encoding the ln(Lu) phenotype reflect a diversity of clinical presentations. Transfusion, 2018, 58, 196-199.	0.8	9
40	Impact of <scp><i>RHD</i></scp> genotyping on transfusion practice in <scp>Denmark</scp> and the <scp>United States</scp> and identification of novel <scp><i>RHD</i></scp> alleles. Transfusion, 2021, 61, 256-265.	0.8	9
41	Deciphering the function of the Rh family of proteins. Transfusion, 2005, 45, 117S-121S.	0.8	7
42	How do I incorporate red cell genotyping to improve chronic transfusion therapy?. Transfusion, 2020, 60, 16-25.	0.8	7
43	Overcoming the challenges of interpreting complex and uncommon RH alleles from whole genomes. Vox Sanguinis, 2020, 115, 790-801.	0.7	5
44	Screening of blood donors for sickle cell trait using a DNA â€based approach: Frequency in a multiethnic donor population. Transfusion, 2021, 61, 2008-2013.	0.8	5
45	Rh and LW Blood Group Antigens. , 0, , 109-120.		3
46	Reliability of labeling red cell units with minor antigen historical results and process considerations. Transfusion, 2020, 60, 822-830.	0.8	3
47	Three new <scp>XK</scp> alleles; two associated with a <scp>McLeod RBC</scp> phenotype. Transfusion, 2021, 61, E69-E70.	0.8	3
48	Rh and LW blood group antigens. , 2016, , 176-184.		2
49	Molecular DNA–Based Blood Group Typing. , 2019, , 131-138.		1
50	A pair of <scp>S</scp> â€silencing single nucleotide variants <i>cis</i> â€linked on <scp><i>GYPB</i></scp> . Transfusion, 2021, 61, E34-E36.	0.8	1
51	Use of an inâ€house trypsinâ€based method to resolve the interference of daratumumab. Transfusion, 2021, 61, 3000-3007.	0.8	1
52	A novel <scp>P1PK</scp> allele in two Bangladeshi sisters with a history of spontaneous abortion: <i><i><scp>A4GALT</scp>*<scp>O2N</scp>(<scp>951C</scp>)</i>. Transfusion, 2021, 61, E71-E72.</i>	0.8	1
53	An intron c.149â€2632T>A change in <scp><i>RHD</i></scp> is associated with aberrant transcription and very weak D phenotype. Transfusion, 2022, 62, .	0.8	1

 $A \ novel \ \langle scp \rangle \langle i \rangle RHD*DAU \\ \langle |i \rangle \langle |scp \rangle \ allele \ with \ \langle scp \rangle \\ c.1136C\> T \ (p.Thr379Met) \ and \ c.17C\> T \ (p.) \ Tj \ ETQq0 \\ 0.8 \ rgBT \ |Qverlock| \ 100 \ rgBT \ |Qverlock| \ |Qverlo$

#	Article	IF	CITATIONS
55	<pre><scp><i>RHCE*02</i></scp> (<scp>c.148G>A</scp>, <scp>p.Val50lle</scp>) allele with silenced <scp><i>RHCE*Ce</i></scp> expression. Transfusion, 2020, 60, E23-E24.</pre>	0.8	O
56	ABO maternalâ€child discordance: Evidence of variable allelic expression and considerations for investigation. Transfusion, 2021, 61, 979-985.	0.8	0
57	Five novel silenced <i><scp>KEL</scp>*02</i> alleles. Transfusion, 2021, 61, E77-E79.	0.8	O
58	An insertion/deletion polymorphism in the <scp><i>KLF1</i></scp> gene resulting in an In(Lu) phenotype. Transfusion, 2021, 61, E73-E74.	0.8	0
59	Five novel <scp>FY</scp> null alleles associated with typing discrepancies. Transfusion, 2021, 61, E80-E82.	0.8	O
60	Ammonium Transport by the Erythrocyte Rh-Associated Protein Blood, 2004, 104, 1594-1594.	0.6	0
61	First report of a null allele on a <i>GYPB*s</i> background: <i>GYPB*s(37 + 4_8delAGTGA)</i> Transfusion, 2022, 62, .	0.8	0