JuliÃ;n D D Arias-Londoño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3319195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automatic Classification of Diagnosis-Related Groups Using ANN and XGBoost Models. Communications in Computer and Information Science, 2021, , 88-102.	0.4	Ο
2	On the design of automatic voice condition analysis systems. Part III: review of acoustic modelling strategies. Biomedical Signal Processing and Control, 2021, 66, 102049.	3.5	12
3	Advances in Parkinson's Disease detection and assessment using voice and speech: A review of the articulatory and phonatory aspects. Biomedical Signal Processing and Control, 2021, 66, 102418.	3.5	80
4	Multimodal and Multi-Output Deep Learning Architectures for the Automatic Assessment of Voice Quality Using the GRB Scale. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 413-422.	7.3	9
5	Differential Profile of Systemic Extracellular Vesicles From Sporadic and Familial Alzheimer's Disease Leads to Neuroglial and Endothelial Cell Degeneration. Frontiers in Aging Neuroscience, 2020, 12, 587989.	1.7	16
6	Common disbalance in the brain parenchyma of dementias: Phospholipid profile analysis between CADASIL and sporadic Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165797.	1.8	12
7	Classification of Diagnosis-Related Groups using Computational Intelligence Techniques , 2020, , .		3
8	Artificial Intelligence Applied to Chest X-Ray Images for the Automatic Detection of COVID-19. A Thoughtful Evaluation Approach. IEEE Access, 2020, 8, 226811-226827.	2.6	70
9	Predicting UPDRS Scores in Parkinson's Disease Using Voice Signals: A Deep Learning/Transfer-Learning-Based Approach. Communications in Computer and Information Science, 2020, , 100-123.	0.4	1
10	Automatic classification of event logs sequences for failure detection in WfM/BPM systems. , 2019, , .		2
11	Fail Detection in WfM/BPM Systems from Event Log Sequences Using HMM-Type Models. Communications in Computer and Information Science, 2019, , 223-234.	0.4	0
12	Sentiment Analysis of News Articles in Spanish using Predicate Features. Lenguaje, 2019, 47, 235-267.	0.1	0
13	Changes in the hippocampal and peripheral phospholipid profiles are associated with neurodegeneration hallmarks in a long-term global cerebral ischemia model: Attenuation by Linalool. Neuropharmacology, 2018, 135, 555-571.	2.0	31
14	ByoVoz Automatic Voice Condition Analysis System for the 2018 FEMH Challenge. , 2018, , .		3
15	MapReduce and Spark-based architecture for bi-class classification using SVM. , 2018, , .		Ο
16	Protein Disorder Prediction using Jumping Motifs from Torsion Angles Dynamics in Ramachandran Plots. , 2018, , .		0
17	Differential Pattern of Phospholipid Profile in the Temporal Cortex from E280A-Familiar and Sporadic Alzheimer's Disease Brains. Journal of Alzheimer's Disease, 2017, 61, 209-219.	1.2	27
18	Fraud detection in big data using supervised and semi-supervised learning techniques. , 2017, , .		32

#	Article	IF	CITATIONS
19	Protein Disorder Prediction using Information Theory Measures on the Distribution of the Dihedral Torsion Angles from Ramachandran Plots. , 2017, , .		0
20	Automatic Feature Selection in the SOPFs Dissolution Profiles Prediction Problem. , 2017, , .		0
21	BACE1 RNAi Restores the Composition of Phosphatidylethanolamine-Derivates Related to Memory Improvement in Aged 3xTg-AD Mice. Frontiers in Cellular Neuroscience, 2016, 10, 260.	1.8	20
22	On-line signature verification using Gaussian Mixture Models and small-sample learning strategies. Revista Facultad De IngenierÃa, 2016, , .	0.5	1
23	Automatic detection of Parkinson's disease in running speech spoken in three different languages. Journal of the Acoustical Society of America, 2016, 139, 481-500.	0.5	151
24	Towards an automatic monitoring of the neurological state of Parkinson's patients from speech. , 2016, , .		31
25	Non-linear Dynamics Characterization from Wavelet Packet Transform for Automatic Recognition of Emotional Speech. Smart Innovation, Systems and Technologies, 2016, , 199-207.	0.5	5
26	Automatic emotion recognition in compressed speech using acoustic and non-linear features. , 2015, , .		7
27	Nonlinear glottal flow features in Parkinson's disease detection. , 2015, , .		2
28	Spectral and cepstral analyses for Parkinson's disease detection in Spanish vowels and words. Expert Systems, 2015, 32, 688-697.	2.9	34
29	Entropies from Markov Models as Complexity Measures of Embedded Attractors. Entropy, 2015, 17, 3595-3620.	1.1	13
30	Emotion recognition from speech under environmental noise conditions using wavelet decomposition. , 2015, , .		7
31	Time-frequency approach in continuous speech for detection of Parkinson's disease. , 2015, , .		4
32	Time Dependent ARMA for Automatic Recognition of Fear-Type Emotions in Speech. Lecture Notes in Computer Science, 2015, , 96-104.	1.0	0
33	Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1820-1828.	3.9	96
34	Evaluation of wavelet measures on automatic detection of emotion in noisy and telephony speech signals. , 2014, , .		7
35	Modulation spectra for automatic detection of Parkinson's disease. , 2014, , .		4
36	Evaluation of the effects of speech enhancement algorithms on the detection of fundamental frequency of speech. , 2014, , .		0

#	Article	IF	CITATIONS
37	Phonation and Articulation Analysis of Spanish Vowels for Automatic Detection of Parkinson's Disease. Lecture Notes in Computer Science, 2014, , 374-381.	1.0	8
38	Nonlinear Dynamics for Hypernasality Detection in Spanish Vowels and Words. Cognitive Computation, 2013, 5, 448-457.	3.6	21
39	Design and implementation of an embedded system for real time analysis of speech from people with Parkinson's disease. , 2013, , .		2
40	Automatic detection of Parkinson's disease using noise measures of speech. , 2013, , .		11
41	Automatic assessment of voice signals according to the GRBAS scale using modulation spectra, Mel frequency Cepstral Coefficients and Noise parameters. , 2013, , .		8
42	Analysis of Speech from People with Parkinson's Disease through Nonlinear Dynamics. Lecture Notes in Computer Science, 2013, , 112-119.	1.0	24
43	Emotion recognition from telephone speech using acoustic and nonlinear features. , 2013, , .		Ο
44	Perceptual Analysis of Speech Signals from People with Parkinson's Disease. Lecture Notes in Computer Science, 2013, , 201-211.	1.0	13
45	New Cues in Low-Frequency of Speech for Automatic Detection of Parkinson's Disease. Lecture Notes in Computer Science, 2013, , 283-292.	1.0	7
46	Multi-labeler Analysis for Bi-class Problems Based on Soft-Margin Support Vector Machines. Lecture Notes in Computer Science, 2013, , 274-282.	1.0	2
47	Objective measurements to evaluate glottal space segmentation from laryngeal images. , 2012, 2012, 5396-9.		1
48	Automatic emotion detection in speech using mel frequency cesptral coefficients. , 2012, , .		3
49	Feature selection for hypernasality detection using PCA, LDA, kernel PCA and greedy kernel PCA. , 2012, , .		0
50	Automatic detection of laryngeal pathologies using cepstral analysis in Mel and Bark scales. , 2012, , .		4
51	Towards collaborative work among speech therapists, phoniatricians, and ENT professionals: Analysis of the impact of ciphering techniques in the performance of an integrated tool for the diagnosis of voice disorders. Biomedical Signal Processing and Control, 2012, 7, 27-36.	3.5	1
52	Towards objective evaluation of perceived roughness and breathiness: An approach based on mel-frequency cepstral analysis. Logopedics Phoniatrics Vocology, 2011, 36, 52-59.	0.5	5
53	Automatic Detection of Hypernasality in Children. Lecture Notes in Computer Science, 2011, , 167-174.	1.0	18
54	Automatic Detection of Pathological Voices Using Complexity Measures, Noise Parameters, and Mel-Cepstral Coefficients. IEEE Transactions on Biomedical Engineering, 2011, 58, 370-379.	2.5	123

#	Article	IF	CITATIONS
55	On combining information from modulation spectra and mel-frequency cepstral coefficients for automatic detection of pathological voices. Logopedics Phoniatrics Vocology, 2011, 36, 60-69.	0.5	59
56	Nonlinear Dynamics for Hypernasality Detection. Lecture Notes in Computer Science, 2011, , 207-214.	1.0	8
57	An improved method for voice pathology detection by means of a HMM-based feature space transformation. Pattern Recognition, 2010, 43, 3100-3112.	5.1	65
58	Dysphonia detection based on modulation spectral features and cepstral coefficients. , 2010, , .		23
59	Complexity analysis of pathological voices by means of hidden markov entropy measurements. , 2009, 2009, 2248-51.		10
60	Effects of Audio Compression in Automatic Detection of Voice Pathologies. IEEE Transactions on Biomedical Engineering, 2008, 55, 2831-2835.	2.5	14