
Lubomir Hnedkovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3319158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lsobaric heat capacity measurements on ternary mixtures of natural gas components methane, propane and n-heptane by differential scanning calorimetry at temperatures from 197ÅK to 422ÅK and pressures up to 32ÅMPa. Fuel, 2022, 308, 121904.	3.4	2
2	Densities and Apparent Molar Volumes of Rubidium and Cesium Triflates to High Concentrations in Aqueous Solution at Temperatures from 293.15 to 343.15 K. Journal of Chemical & Engineering Data, 2022, 67, 123-131.	1.0	0
3	Densities and Apparent Molar Volumes of Aqueous Solutions of Zinc Sulfate at Temperatures from 293 to 373 K and 0.1 MPa Pressure. Journal of Chemical & Engineering Data, 2021, 66, 38-44.	1.0	8
4	lsobaric heat capacities of a methane (1)Â+Âpropane (2) mixture by differential scanning calorimetry at near-critical and supercritical conditions. Fuel, 2021, 289, 119840.	3.4	7
5	Densities and Apparent Molar Volumes of Aqueous Solutions of Sodium and Potassium Triflates up to High Concentrations at Temperatures 293.15–343.15 K. Journal of Chemical & Engineering Data, 2021, 66, 1802-1812.	1.0	4
6	Chemical speciation effects on the volumetric properties of aqueous sulfuric acid solutions. Journal of Chemical Thermodynamics, 2021, 158, 106408.	1.0	4
7	lsobaric heat capacity measurements of natural gas model mixtures (methaneÂ+Ân-heptane) and (propaneÂ+Ân-heptane) by differential scanning calorimetry at temperatures from 313ÂK to 422ÂK and pressures up to 31ÂMPa. Fuel, 2021, 296, 120668.	3.4	9
8	A Simple 1–1 Electrolyte: Volumetric Properties of Aqueous Solutions of Sulfuric Acid at Elevated Temperatures. Journal of Chemical & Engineering Data, 2021, 66, 3219-3225.	1.0	0
9	Densities and Apparent Molar Volumes of Aqueous Solutions of NaClO ₄ , KClO ₄ , and KCl at Temperatures from 293 to 343 K. Journal of Chemical & Engineering Data, 2021, 66, 3645-3658.	1.0	2
10	A Volumetric Pitzer Model for Aqueous Solutions of Zinc Sulfate up to Near-Saturation Concentrations at Temperatures from 293.15 to 393.15 K and Pressures up to 10 MPa. Journal of Chemical & Engineering Data, 2021, 66, 58-64.	1.0	5
11	Molar Volumes and Heat Capacities of Aqueous Solutions of Mg(ClO ₄) ₂ . Journal of Chemical & Engineering Data, 2020, 65, 3735-3743.	1.0	5
12	Heat Capacities of Aqueous Solutions of K4Fe(CN)6, K3Fe(CN)6, K3Co(CN)6, K2Ni(CN)4, and KAg(CN)2at 298.15 K. Journal of Chemical & Engineering Data, 2018, 63, 1773-1779.	1.0	5
13	Densities and Apparent Molar Volumes of Aqueous Solutions of K4Fe(CN)6, K3Fe(CN)6, K3Co(CN)6, K2Ni(CN)4, and KAg(CN)2 at 293 to 343 K. Journal of Chemical & Engineering Data, 2018, 63, 3860-3873.	1.0	1
14	Predicting Cyanide Consumption in Gold Leaching: A Kinetic and Thermodynamic Modeling Approach. Minerals (Basel, Switzerland), 2018, 8, 110.	0.8	20
15	Molar Volumes and Heat Capacities of Aqueous Solutions of Potassium Hydroxide and for Water Ionization up to 573 K at 10 MPa. Journal of Chemical & Engineering Data, 2017, 62, 2959-2972.	1.0	8
16	Electrical conductances of aqueous electrolytes at high temperatures: Limiting mobilities of several ions including the proton and HCl dissociation constant. Journal of Molecular Liquids, 2017, 239, 31-44.	2.3	8
17	Apparent molar volumes of aqueous solutions of sodium acetate and sodium benzoate at temperatures from 323 K to 573 K and pressure 10 MPa. Journal of Chemical Thermodynamics, 2017, 109, 100-108.	1.0	1
18	Densities and Molar Volumes of Aqueous Solutions of Li ₂ SO ₄ at Temperatures from 343 to 573 K. Journal of Chemical & Engineering Data, 2017, 62, 3593-3602.	1.0	1

IF

#	Article	IF	CITATIONS
19	Densities and Apparent Molar Volumes of Aqueous Solutions of Li ₂ SO ₄ and LiCF ₃ SO ₃ at Temperatures from 293 to 343 K. Journal of Chemical & Engineering Data, 2016, 61, 3618-3626.	1.0	13
20	Heat Capacities of Aqueous Solutions of Lithium Sulfate, Lithium Perchlorate, and Lithium Trifluoromethanesulfonate at 298.15 K. Journal of Chemical & Engineering Data, 2016, 61, 2149-2154.	1.0	7
21	Densities and Molar Volumes of Aqueous Solutions of LiClO ₄ at Temperatures from 293 K to 343 K. Journal of Chemical & Engineering Data, 2016, 61, 1388-1394.	1.0	18
22	Partial Molar Volumes of I-Serine and I-Threonine in Aqueous Ammonium Sulfate Solutions at (278.15,) Tj ETQqC	0 0 rgBT 0.6	/Overlock 10 24
23	Partial Molar Volumes of Glycine and dl-Alanine in Aqueous Ammonium Sulfate Solutions at 278.15, 288.15, 298.15 and 308.15ÂK. Journal of Solution Chemistry, 2014, 43, 972-988.	0.6	14
24	Partial Molar Volumes and Partial Molar Isentropic Compressions of Selected Branched Diols at Infinite Dilution in Water at Temperatures <i>T</i> = (278 to 318) K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2013, 58, 2487-2495.	1.0	1
25	Partial Molar Isentropic Compressions and Partial Molar Volumes of Isomeric Butanediols at Infinite Dilution in Water at Temperatures <i>T</i> = (278 to 318) K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2013, 58, 388-397.	1.0	8
26	Partial molar volumes of organic solutes in water. XXIV. Selected alkane-α,ω-diols at temperatures T=298K to 573K and pressures up to 30MPa. Journal of Chemical Thermodynamics, 2013, 64, 231-238.	1.0	5
27	Partial Molar Volumes and Partial Molar Isentropic Compressions of Selected Alkane-α,ï‰-diols at Infinite Dilution in Water at Temperatures <i>T</i> = (278 to 318) K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2013, 58, 1724-1734.	1.0	18
28	Partial Molar Isentropic Compressions and Partial Molar Volumes of Selected Branched Aliphatic Alcohols at Infinite Dilution in Water at Temperatures from T = (278 to 318) K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2012, 57, 1570-1580.	1.0	23
29	Partial Molar Volumes and Partial Molar Isentropic Compressions of Three Polyhydric Alcohols Derived from Propane at Infinite Dilution in Water at Temperatures T = (278 to 318) K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2012, 57, 1152-1159.	1.0	22
30	Partial Molar Volumes of Selected Aliphatic Alcohols at Infinite Dilution in Water at Temperatures <i>T</i> = (278 to 573) K and Pressures up to 30 MPa. Journal of Chemical & Engineering Data, 2011, 56, 4564-4576.	1.0	14
31	Partial Molar Volumes and Partial Molar Isentropic Compressions of Î ³ -Butyrolactone and ε-Caprolactone at Infinite Dilution in Water at Temperatures (278.15 to 318.15) K and at Atmospheric Pressure. Journal of Solution Chemistry, 2011, 40, 751-763.	0.6	3
32	Group contribution method for standard molar volumes of aqueous aliphatic alcohols, ethers and ketones over extended ranges of temperature and pressure. Journal of Chemical Thermodynamics, 2011, 43, 1215-1223.	1.0	17
33	Partial molar volumes of organic solutes in water. XXIII. Cyclic ketones at T= (298 to 573) K and pressures up to 30 MPa. Journal of Chemical Thermodynamics, 2011, 43, 1028-1035.	1.0	7
34	Partial molar volumes of organic solutes in water. XX. Glycine(aq) and l-alanine(aq) at temperatures (298 to 443) K and at pressures up to 30 MPa. Journal of Chemical Thermodynamics, 2010, 42, 198-207.	1.0	31
35	Densities of Concentrated Alkaline Aluminate Solutions at Temperatures from (323 to 573) K and 10 MPa Pressure. Journal of Chemical & Engineering Data, 2010, 55, 1173-1178.	1.0	8
36	Partial molar volumes of organic solutes in water. XIX. Cyclic alcohols(aq) at T= (298 to 573) K and at pressures up to 30 MPa. Journal of Chemical Thermodynamics, 2009, 41, 489-498.	1.0	10

#	Article	IF	CITATIONS
37	Partial Molar Volumes of Cyclic Alcohols at Infinite Dilution in Water at Temperatures T = (298 to 373) K and Pressure of 0.5 MPa. Journal of Chemical & Engineering Data, 2009, 54, 459-463.	1.0	7
38	Densities of NaOH(aq) at Temperatures from (323 to 573) K and 10 MPa Pressure. Journal of Chemical & Engineering Data, 2007, 52, 2237-2244.	1.0	9
39	Standard partial molar volumes in water of mono- and polyhydric aliphatic alcohols in wide ranges of temperature and pressure. Journal of Molecular Liquids, 2007, 131-132, 206-215.	2.3	20
40	Partial molar volumes of organic solutes in water. XVIII: Selected polyethers(aq) and 3,6-dioxa-1-heptanol(aq) at T=(298 to 573)K and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2007, 39, 1292-1299.	1.0	14
41	Partial molar volumes of organic solutes in water. XVII: 3-Pentanone(aq) and 2,4-pentanedione(aq) at T=(298 to 573)K and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2007, 39, 1286-1291.	1.0	7
42	Partial molar volumes of organic solutes in water. XIV. Polyhydric alcohols derived from ethane and propane at temperatures T=298K to T=573K and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2006, 38, 801-809.	1.0	42
43	Partial Molar Volumes of Phenylacetic Acid and Several Polysubstituted Benzenes at Infinite Dilution in Water at Temperatures T = 298 to 373 K and at Pressures up to 30 MPa. Journal of Solution Chemistry, 2006, 35, 1029-1036.	0.6	0
44	Partial molar volumes of organic solutes in water. XIII. Butanols (aq) at temperatures T=298K to 573K and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2006, 38, 418-426.	1.0	31
45	Partial molar volumes of organic solutes in water. XV. Butanediols(aq) at temperatures from (298K to) Tj ETQq1	1	4 rgBT /Over
46	Electrical Conductances of Aqueous Na2SO4, H2SO4, and Their Mixtures: Limiting Equivalent Ion Conductances, Dissociation Constants, and Speciation to 673 K and 28 MPa ChemInform, 2005, 36, no.	0.1	0
47	Electrical Conductances of Aqueous Na2SO4, H2SO4, and Their Mixtures:Â Limiting Equivalent Ion Conductances, Dissociation Constants, and Speciation to 673 K and 28 MPa. Journal of Physical Chemistry B, 2005, 109, 9034-9046.	1.2	54
48	Partial molar volumes of organic solutes in water. XII. Methanol(aq), ethanol(aq), 1-propanol(aq), and 2-propanol(aq) at T=(298 to 573) K and at pressures up to 30 MPa. Journal of Chemical Thermodynamics, 2004, 36, 1095-1103.	1.0	52
49	Parameters of the Bender Equation of State for Chloro Derivatives of Methane and Chlorobenzene. Collection of Czechoslovak Chemical Communications, 2001, 66, 833-854.	1.0	1
50	Partial molar volumes of organic solutes in water. VI.o-Chlorophenol andp-chlorophenol at temperatures from 298 K to 573 K and pressures up to 30 MPa. Journal of Chemical Thermodynamics, 2001, 33, 1049-1057.	1.0	23
51	Partial molar volumes of organic solutes in water. III. Aniline at temperaturesT= 298 K toT= 573 K and pressures up to 30 MPa. Journal of Chemical Thermodynamics, 2000, 32, 1221-1227.	1.0	21
52	Partial molar volumes of organic solutes in water. IV. Benzoic and hydroxybenzoic acids at temperatures fromT= 298 K toT= 498 K and pressures up to 30 MPa. Journal of Chemical Thermodynamics, 2000, 32, 1299-1310.	1.0	22
53	Partial molar volumes of organic solutes in water. V.o-,m-, andp-toluidine at temperatures from 298 K to 573 K and pressures up to 30 MPa. Journal of Chemical Thermodynamics, 2000, 32, 1657-1668.	1.0	16
54	Thermodynamics of aqueous acetic and propionic acids and their anions over a wide range of temperatures and pressures. Physical Chemistry Chemical Physics, 2000, 2, 2907-2917.	1.3	24

#	Article	IF	CITATIONS
55	Amino Acids under Hydrothermal Conditions:  Apparent Molar Heat Capacities of Aqueous α-Alanine, β-Alanine, Glycine, and Proline at Temperatures from 298 to 500 K and Pressures up to 30.0 MPa. Journal of Physical Chemistry B, 2000, 104, 11781-11793.	1.2	43
56	Pâ~̈l̈́á^'TData of Liquids:Â Summarization and Evaluation. 4. Higher 1-Alkanols (C11, C12, C14, C16), Secondary, Tertiary, and Branched Alkanols, Cycloalkanols, Alkanediols, Alkanetriols, Ether Alkanols, and Aromatic Hydroxy Derivatives. Journal of Chemical & Engineering Data, 1997, 42, 415-433.	1.0	47
57	Liquid Densities at Elevated Pressures ofn-Alkanes from C5to C16:Â A Critical Evaluation of Experimental Data. Journal of Chemical & Engineering Data, 1996, 41, 657-668.	1.0	155
58	Excess Volumes of 1,4-Dioxane + Ethane-1,2-diol at 298.15 K. Journal of Chemical & Engineering Data, 1995, 40, 974-975.	1.0	3
59	On a temperature dependence of the van der Waals volume parameter in cubic equations of state. Fluid Phase Equilibria, 1990, 60, 327-332.	1.4	7
60	(Vapour + liquid) equilibria, limiting activity coefficients, and excess molar volumes of {1-bromo-1-chloro-2,2,2-trifluoroethane (halothane) + tetrachloromethane or trichloromethane or 1,1,1-trichloroethane}. Journal of Chemical Thermodynamics, 1987, 19, 1145-1154.	1.0	14