Lubomir Hnedkovsky

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3319158/publications.pdf
Version: 2024-02-01

3.4

4 to 32 ÂMPa. Fuel, 2022, 308, 121904.

Densities and Apparent Molar Volumes of Rubidium and Cesium Triflates to High Concentrations in
2 Aqueous Solution at Temperatures from 293.15 to 343.15 K. Journal of Chemical \& Engineering Data,
1.0

2022, 67, 123-131.
Densities and Apparent Molar Volumes of Aqueous Solutions of Zinc Sulfate at Temperatures from 293
to 373 K and 0.1 MPa Pressure. Journal of Chemical \& Engineering Data, 2021, 66, 38-44.
4 Isobaric heat capacities of a methane (1)ÂA+Âpropane (2) mixture by differential scanning calorimetry at
near-critical and supercritical conditions. Fuel, 2021, 289, 119840.
$1.0 \quad 8$
$3.4 \quad 7$

Densities and Apparent Molar Volumes of Aqueous Solutions of Sodium and Potassium Triflates up to
$5 \quad$ High Concentrations at Temperatures 293.15â€"343.15 K. Journal of Chemical \& Engineering Data, 2021, 66, 1802-1812.

6 Chemical speciation effects on the volumetric properties of aqueous sulfuric acid solutions. Journal of Chemical Thermodynamics, 2021, 158, 106408.
$1.0 \quad 4$

7	Isobaric heat capacity measurements of natural gas model mixtures (methane $\hat{A}+\hat{A} n-h e p t a n e) ~ a n d ~$ (propane $\hat{A}+\hat{A} n$-heptane) by differential scanning calorimetry at temperatures from $313 \hat{A} K$ to $422 \hat{A} K$ and pressures up to 31ÂMPa. Fuel, 2021, 296, 120668.	3.4

8 A Simple lâ€"1 Electrolyte: Volumetric Properties of Aqueous Solutions of Sulfuric Acid at Elevated Temperatures. Journal of Chemical \& Engineering Data, 2021, 66, 3219-3225.
$1.0 \quad 0$

$$
\text { Densities and Apparent Molar Volumes of Aqueous Solutions of } \mathrm{NaClO}\langle\mathrm{sub}\rangle 4</ \mathrm{sub}\rangle
$$

$9 \quad \mathrm{KClO}<$ sub $>4</$ sub $>$, and KCl at Temperatures from 293 to 343 K . Journal of Chemical \& Engineering $\quad 1.0$ Data, 2021, 66, 3645-3658.

A Volumetric Pitzer Model for Aqueous Solutions of Zinc Sulfate up to Near-Saturation
10 Concentrations at Temperatures from 293.15 to 393.15 K and Pressures up to 10 MPa . Journal of
$1.0 \quad 5$ Chemical \& Engineering Data, 2021, 66, 58-64.

Molar Volumes and Heat Capacities of Aqueous Solutions of $\operatorname{Mg}(\mathrm{ClO}\langle$ sub $>4</$ sub $\rangle)<$ sub $>2</$ sub $>$.
Journal of Chemical \& Engineering Data, 2020, $65,3735-3743$.

Heat Capacities of Aqueous Solutions of $\mathrm{K} 4 \mathrm{Fe}(\mathrm{CN}) 6, \mathrm{~K} 3 \mathrm{Fe}(\mathrm{CN}) 6, \mathrm{~K} 3 \mathrm{Co}(\mathrm{CN}) 6, \mathrm{~K} 2 \mathrm{Ni}(\mathrm{CN}) 4$, and $\mathrm{KAg}(\mathrm{CN}) 2$ at
12 298.15 K. Journal of Chemical \& Engineering Data, 2018, 63, 1773-1779.
$1.0 \quad 5$

Densities and Apparent Molar Volumes of Aqueous Solutions of K4Fe(CN)6, K3Fe(CN)6, K3Co(CN)6,
$13 \quad \mathrm{~K} 2 \mathrm{Ni}(\mathrm{CN}) 4$, and $\mathrm{KAg}(\mathrm{CN}) 2$ at 293 to 343 K . Journal of Chemical \& Engineering Data, 2018, 63, 3860-3873.
$1.0 \quad 1$

Predicting Cyanide Consumption in Gold Leaching: A Kinetic and Thermodynamic Modeling Approach.
0.8

20
Minerals (Basel, Switzerland), 2018, 8, 110.

Molar Volumes and Heat Capacities of Aqueous Solutions of Potassium Hydroxide and for Water
Ionization up to 573 K at 10 MPa. Journal of Chemical \& Engineering Data, 2017, 62, 2959-2972.
1.0

8

Electrical conductances of aqueous electrolytes at high temperatures: Limiting mobilities of several
Densities and Apparent Molar Volumes of Aqueous Solutions of $\mathrm{Li}<\mathrm{sub}\rangle 2<\mid$ sub $>\mathrm{SO}<$ sub $>4</$ sub $>$ and
$\mathrm{LiCF}<$ sub $>3</$ sub $>\mathrm{SO}<$ sub $>3</$ sub $>$ at Temperatures from 293 to 343 K . Journal of Chemical \&

Densities and Molar Volumes of Aqueous Solutions of LiClO ₄ at Temperatures from 293 K

Partial Molar Volumes of I-Serine and I-Threonine in Aqueous Ammonium Sulfate Solutions at (278.15,) Tj ETQq0 $08 . \mathrm{grBT}_{\text {/ }}$ /Overlock 10

Partial Molar Volumes of Glycine and dl-Alanine in Aqueous Ammonium Sulfate Solutions at 278.15, 288.15, 298.15 and 308.15ÂK. Journal of Solution Chemistry, 2014, 43, 972-988.
$0.6 \quad 14$

Partial Molar Volumes and Partial Molar Isentropic Compressions of Selected Branched Diols at
24 Infinite Dilution in Water at Temperatures $\langle\mathrm{i}\rangle \mathrm{T}\langle/ \mathrm{i}\rangle=(278$ to 318$) \mathrm{K}$ and Atmospheric Pressure. Journal of Chemical \& Engineering Data, 2013, 58, 2487-2495.

Partial Molar Isentropic Compressions and Partial Molar Volumes of Isomeric Butanediols at Infinite

25 Dilution in Water at Temperatures <i>T</i>=(278 to 318) K and Atmospheric Pressure. Journal of
$1.0 \quad 8$ Chemical \& Engineering Data, 2013, 58, 388-397.

Partial molar volumes of organic solutes in water. XXIV. Selected alkane-Î $\pm, \hat{\%} \%$-diols at temperatures
$\mathrm{T}=298 \mathrm{~K}$ to 573 K and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2013, 64, 231-238.
Partial Molar Volumes and Partial Molar Isentropic Compressions of Selected Alkane- $\hat{-1 \pm}, \hat{\%} \%$-diols at Infinite
27 Dilution in Water at Temperatures $\langle i\rangle T\langle\mid i\rangle=(278$ to 318$) \mathrm{K}$ and Atmospheric Pressure. Journal of
1.0

18
Chemical \& Engineering Data, 2013, 58, 1724-1734.
Partial Molar Isentropic Compressions and Partial Molar Volumes of Selected Branched Aliphatic
28 Alcohols at Infinite Dilution in Water at Temperatures from $\mathrm{T}=(278$ to 318$) \mathrm{K}$ and Atmospheric
Pressure. Journal of Chemical \& Engineering Data, 2012, 57, 1570-1580.

29	Partial Molar Volumes and Partial Molar Isentropic Compressions of Three Polyhydric Alcohols Derived from Propane at Infinite Dilution in Water at Temperatures $\mathrm{T}=(278$ to 318$) \mathrm{K}$ and Atmospheric Pressure. Journal of Chemical \& Engineering Data, 2012, 57, 1152-1159.	1.0	22
30	Partial Molar Volumes of Selected Aliphatic Alcohols at Infinite Dilution in Water at Temperatures <i>T<\|i〉 = (278 to 573) K and Pressures up to 30 MPa . Journal of Chemical \& Engineering Data, 2011, 56, 4564-4576.	1.0	14
31	Partial Molar Volumes and Partial Molar Isentropic Compressions of $\hat{1}$-Butyrolactone and $\hat{I} \mu$-Caprolactone at Infinite Dilution in Water at Temperatures (278.15 to 318.15) K and at Atmospheric Pressure. Journal of Solution Chemistry, 2011, 40, 751-763.	0.6	3

6. Group contribution method for standard molar volumes of aqueous aliphatic alcohols, ethers and

32 ketones over extended ranges of temperature and pressure. Journal of Chemical Thermodynamics, 2011,
1.0

17
43, 1215-1223.
33 Partial molar volumes of organic solutes in water. XXIII. Cyclic ketones at T=(298 to 573) K and
1.0
pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2011, 43, 1028-1035.

Partial molar volumes of organic solutes in water. XX. Clycine (aq) and l-alanine (aq) at temperatures
(298 to 443) K and at pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2010, 42, 198-207.
1.0

31

Densities of Concentrated Alkaline Aluminate Solutions at Temperatures from (323 to 573) K and 10 MPa
$35 \quad \begin{aligned} & \text { Densities of Concentrated Alraline Aluminate Solutions at Temperatures from } \\ & \text { Pressure. Journal of Chemical \& Engineering Data, 2010, 55, 1173-1178. }\end{aligned}$
1.0

8

39	Standard partial molar volumes in water of mono- and polyhydric aliphatic alcohols in wide ranges of temperature and pressure. Journal of Molecular Liquids, 2007, 131-132, 206-215.	2.3	20
40	Partial molar volumes of organic solutes in water. XVIII: Selected polyethers(aq) and 3,6-dioxa-1-heptanol(aq) at $\mathrm{T}=(298$ to 573$) \mathrm{K}$ and at pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2007, 39, 1292-1299.	1.0	14
41	Partial molar volumes of organic solutes in water. XVII: 3-Pentanone(aq) and 2,4-pentanedione(aq) at $\mathrm{T}=(298$ to 573$) \mathrm{K}$ and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2007, 39, 1286-1291.	1.0	7
42	Partial molar volumes of organic solutes in water. XIV. Polyhydric alcohols derived from ethane and propane at temperatures $\mathrm{T}=298 \mathrm{~K}$ to $\mathrm{T}=573 \mathrm{~K}$ and at pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2006, 38, 801-809.	1.0	42
43	Partial Molar Volumes of Phenylacetic Acid and Several Polysubstituted Benzenes at Infinite Dilution in Water at Temperatures T = 298 to 373 K and at Pressures up to 30 MPa . Journal of Solution Chemistry, 2006, 35, 1029-1036.	0.6	0

Partial molar volumes of organic solutes in water. XIII. Butanols (aq) at temperatures T=298K to 573 K and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2006, 38, 418-426.
1.0

31

Partial molar volumes of organic solutes in water. XV. Butanediols(aq) at temperatures from (298K to) Tj ETQq1 1 Q. 784314 rgBT /Ov

Electrical Conductances of Aqueous $\mathrm{Na} 2 \mathrm{SO} 4, \mathrm{H} 2 \mathrm{SO} 4$, and Their Mixtures: Limiting Equivalent lon
Conductances, Dissociation Constants, and Speciation to 673 K and 28 MPa.. ChemInform, 2005, 36, no.
$0.1 \quad 0$
Electrical Conductances of Aqueous $\mathrm{Na} 2 \mathrm{SO} 4, \mathrm{H} 2 \mathrm{SO} 4$, and Their Mixtures: $\hat{\mathrm{A}}$ Limiting Equivalent Ion
47 Conductances, Dissociation Constants, and Speciation to 673 K and 28 MPa . Journal of Physical
1.2
Chemistry B, 2005, 109, 9034-9046.

Partial molar volumes of organic solutes in water. XII. Methanol(aq), ethanol(aq), 1-propanol(aq), and
48

2-propanol(aq) at $\mathrm{T}=(298$ to 573$) \mathrm{K}$ and at pressures up to 30 MPa . Journal of Chemical Thermodynamics,
1.0

52
2004, 36, 1095-1103.

Parameters of the Bender Equation of State for Chloro Derivatives of Methane and Chlorobenzene.
Collection of Czechoslovak Chemical Communications, 2001, 66, 833-854.
Partial molar volumes of organic solutes in water. Vl.o-Chlorophenol andp-chlorophenol at
50 temperatures from 298 K to 573 K and pressures up to 30 MPa . Journal of Chemical Thermodynamics,
1.0
$1.0 \quad 1$

2001, 33, 1049-1057.

Partial molar volumes of organic solutes in water. III. Aniline at temperaturesT=298 K toT=573 K and
1.0
pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2000, 32, 1221-1227.
21

Partial molar volumes of organic solutes in water. IV. Benzoic and hydroxybenzoic acids at
52 temperatures fromT $=298 \mathrm{~K}$ toT $=498 \mathrm{~K}$ and pressures up to 30 MPa . Journal of Chemical
1.0

22
Thermodynamics, 2000, 32, 1299-1310.

Partial molar volumes of organic solutes in water. V.o-,m-, andp-toluidine at temperatures from 298 K
1.0

16

Pâ^’lî̀̂’TData of Liquids:Â Summarization and Evaluation. 4. Higher 1-Alkanols (C11, C12, C14, C16), Secondary, 56 Tertiary, and Branched Alkanols, Cycloalkanols, Alkanediols, Alkanetriols, Ether Alkanols, and

Aromatic Hydroxy Derivatives. Journal of Chemical \& Engineering Data, 1997, 42, 415-433.
Liquid Densities at Elevated Pressures ofn-Alkanes from C5to C16:Â A Critical Evaluation of

