Liming Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3318991/publications.pdf Version: 2024-02-01

LIMING GE

#	Article	IF	CITATIONS
1	Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids, 2014, 39, 243-250.	5.6	184
2	Facile Fabrication of Biocompatible Gelatin-Based Self-Healing Hydrogels. ACS Applied Polymer Materials, 2019, 1, 1350-1358.	2.0	120
3	Fabrication of Antibacterial Collagen-Based Composite Wound Dressing. ACS Sustainable Chemistry and Engineering, 2018, 6, 9153-9166.	3.2	110
4	Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids, 2018, 83, 308-316.	5.6	106
5	Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydrate Polymers, 2017, 174, 1051-1058.	5.1	89
6	Development and characterization of dialdehyde xanthan gum crosslinked gelatin based edible films incorporated with amino-functionalized montmorillonite. Food Hydrocolloids, 2015, 51, 129-135.	5.6	62
7	Emulsion Template Method for the Fabrication of Gelatin-Based Scaffold with a Controllable Pore Structure. ACS Applied Materials & amp; Interfaces, 2019, 11, 269-277.	4.0	51
8	Fabrication of Polypyrrole-Grafted Gelatin-Based Hydrogel with Conductive, Self-Healing, and Injectable Properties. ACS Applied Polymer Materials, 2020, 2, 3016-3023.	2.0	46
9	Development of Antimicrobial and Controlled Biodegradable Gelatin-Based Edible Films Containing Nisin and Amino-Functionalized Montmorillonite. Food and Bioprocess Technology, 2017, 10, 1727-1736.	2.6	42
10	Development of Disulfide Bond Crosslinked Gelatin/ε-Polylysine Active Edible Film with Antibacterial and Antioxidant Activities. Food and Bioprocess Technology, 2020, 13, 577-588.	2.6	41
11	Dihydromyricetin-Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin–Based Edible Films. Food and Bioprocess Technology, 2021, 14, 1648-1661.	2.6	32
12	Green synthesis of κ-carrageenan@Ag submicron-particles with high aqueous stability, robust antibacterial activity and low cytotoxicity. Materials Science and Engineering C, 2020, 106, 110185.	3.8	31
13	Antibacterial dialdehyde sodium alginate/ε-polylysine microspheres for fruit preservation. Food Chemistry, 2022, 387, 132885.	4.2	31
14	pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modified hydroxyethyl starch for tumor chemotherapy. Carbohydrate Polymers, 2022, 277, 118827.	5.1	30
15	Development of Microspheres Based on Thiol-Modified Sodium Alginate for Intestinal-Targeted Drug Delivery. ACS Applied Bio Materials, 2019, 2, 5810-5818.	2.3	21
16	Functionalization of an Electroactive Self-Healing Polypyrrole-Grafted Gelatin-Based Hydrogel by Incorporating a Polydopamine@AgNP Nanocomposite. ACS Applied Bio Materials, 2021, 4, 5797-5808.	2.3	19
17	Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel. Carbohydrate Polymers, 2022, 285, 119237.	5.1	19
18	Oxidized starch cross-linked porous collagen-based hydrogel for spontaneous agglomeration growth of adipose-derived stem cells. Materials Science and Engineering C, 2020, 116, 111165.	3.8	15

Liming Ge

#	Article	IF	CITATIONS
19	Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability. International Journal of Biological Macromolecules, 2022, 202, 55-67.	3.6	15
20	Shortâ€range and longâ€range crossâ€linking effects of polygenipin on gelatinâ€based composite materials. Journal of Biomedical Materials Research - Part A, 2016, 104, 2712-2722.	2.1	14
21	Controlling the Pore Structure of Collagen Sponge by Adjusting the Cross-Linking Degree for Construction of Heterogeneous Double-Layer Bone Barrier Membranes. ACS Applied Bio Materials, 2020, 3, 2058-2067.	2.3	14
22	Matrix metalloproteinase-responsive collagen-oxidized hyaluronic acid injectable hydrogels for osteoarthritic therapy. , 2022, 137, 212804.		13
23	Stability Enhanced Pickering Emulsions Based on Gelatin and Dialdehyde Starch Nanoparticles as Simple Strategy for Structuring Liquid Oils. Food and Bioprocess Technology, 2021, 14, 1600-1610.	2.6	10
24	Functionalization of an Injectable Self-Healing pH-Responsive Hydrogel by Incorporating a Curcumin/Polymerized β-Cyclodextrin Inclusion Complex for Selective Toxicity to Osteosarcoma. ACS Applied Polymer Materials, 2022, 4, 1243-1254.	2.0	10
25	¹³¹ I-Labeled Silk Fibroin Microspheres for Radioembolic Therapy of Rat Hepatocellular Carcinoma. ACS Applied Materials & Interfaces, 2022, 14, 21848-21859.	4.0	10
26	Emulsion Template Fabrication of Antibacterial Gelatin-Based Scaffolds with a Preferred Microstructure for Accelerated Wound Healing. ACS Applied Polymer Materials, 2022, 4, 3885-3895.	2.0	8
27	Mimicking the Composition and Structure of the Osteochondral Tissue to Fabricate a Heterogeneous Three-Layer Scaffold for the Repair of Osteochondral Defects. ACS Applied Bio Materials, 2022, 5, 734-746.	2.3	7
28	Blockade of integrin signaling reduces chemotherapy-induced premature senescence in collagen cultured bladder cancer cells. Precision Clinical Medicine, 2022, 5, .	1.3	4
29	Hydrothermal shrinkage behavior of pigskin. Thermochimica Acta, 2021, 699, 178896.	1.2	2