Maria K Doula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3318791/publications.pdf Version: 2024-02-01

Μλριλ Κ Ποιιιλ

#	Article	IF	CITATIONS
1	Remote Sensing, Geophysics, and Modeling to Support Precision Agriculture—Part 2: Irrigation Management. Water (Switzerland), 2022, 14, 1157.	2.7	9
2	Remote Sensing, Geophysics, and Modeling to Support Precision Agriculture—Part 1: Soil Applications. Water (Switzerland), 2022, 14, 1158.	2.7	7
3	Carving out a Niche in the Sustainability Confluence for Environmental Education Centers in Cyprus and Greece. Sustainability, 2022, 14, 8368.	3.2	26
4	Measuring the level of environmental performance in insular areas, through key performed indicators, in the framework of waste strategy development. Science of the Total Environment, 2021, 753, 141974.	8.0	86
5	Should heavy metals be an issue of concern at olive mill waste disposal areas? The case of nickel. Current Opinion in Environmental Science and Health, 2021, 22, 100270.	4.1	4
6	Waste Strategies Development in the Framework of Circular Economy. Sustainability, 2021, 13, 13467.	3.2	16
7	Growth, yield and nutrient status of pepper plants grown on a soil substrate with olive mill waste sludge and natural zeolite addition. Journal of Plant Nutrition, 2020, 43, 629-640.	1.9	10
8	Life Cycle Analysis in the Framework of Agricultural Strategic Development Planning in the Balkan Region. Sustainability, 2020, 12, 1813.	3.2	43
9	Nematicidal Amendments and Soil Remediation. Plants, 2020, 9, 429.	3.5	32
10	Evaluation of the influence of olive mill waste on soils: the case study of disposal areas in Crete, Greece. Comptes Rendus Chimie, 2020, 23, 705-720.	0.5	6
11	Pepper cultivation on a substrate consisting of soil, natural zeolite, and olive mill waste sludge: changes in soil properties. Comptes Rendus Chimie, 2020, 23, 721-732.	0.5	2
12	OPTIMIZATION OF HEAVY POLLUTED SOIL FROM OLIVE MILL WASTE THROUGH THE IMPLEMENTATION OF ZEOLITES. Environmental Engineering and Management Journal, 2019, 18, 1297-1309.	0.6	8
13	Framework to improve sustainability of agriculture in small islands: The case ofPistacia veraL. cultivation in Aegina, Greece. Environmental Forensics, 2017, 18, 214-225.	2.6	5
14	Olive mill waste: recent advances for the sustainable development of olive oil industry. , 2017, , 29-56.		26
15	Development of web-based GIS services for sustainable soil resource management at farm level. , 2017, ,		0
16	Building a strategy for soil protection at local and regional scale—the case of agricultural wastes landspreading. Environmental Monitoring and Assessment, 2016, 188, 141.	2.7	13
17	Geostatistical estimation of risk for soil and water in the vicinity of olive mill wastewater disposal sites. Desalination and Water Treatment, 2016, 57, 2982-2995.	1.0	16
18	Long-term application of olive-mill wastewater affects soil chemical and microbial properties. Soil Research, 2015, 53, 461.	1.1	16

Maria K Doula

#	Article	IF	CITATIONS
19	Long-Term Effects on Soil of the Disposal of Olive Mill Waste Waters (OMW). Environmental Forensics, 2014, 15, 37-51.	2.6	26
20	Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes. , 2014, , .		2
21	Proposed Soil Indicators for Olive Mill Waste (OMW) Disposal Areas. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	16
22	Use of clinoptilolite to improve and protect soil quality from the disposal of olive oil mills wastes. Journal of Hazardous Materials, 2012, 207-208, 103-110.	12.4	25
23	Origin of Recalcitrant Heavy Metals Present in Olive Mill Wastewater Evaporation Ponds and Nearby Agricultural Soils. Environmental Forensics, 2011, 12, 319-326.	2.6	13
24	Disposal of olive oil mill wastes in evaporation ponds: Effects on soil properties. Journal of Hazardous Materials, 2010, 182, 144-155.	12.4	125
25	Removal of iron and manganese from underground water by use of natural minerals in batch mode treatment. Desalination and Water Treatment, 2010, 18, 341-346.	1.0	27
26	Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Research, 2009, 43, 3659-3672.	11.3	116
27	An EPR study of Cu adsorption by clinoptilolite from Clâ^', NO 3 â^' and SO 4 2â^' solutions. Journal of Porous Materials, 2008, 15, 457-466.	2.6	5
28	Use of an iron-overexchanged clinoptilolite for the removal of Cu2+ ions from heavily contaminated drinking water samples. Journal of Hazardous Materials, 2008, 151, 738-745.	12.4	57
29	Use of clinoptilolite and an Fe-overexchanged clinoptilolite in Zn2+ and Mn2+ removal from drinking water. Desalination, 2008, 224, 280-292.	8.2	71
30	Synthesis of a clinoptilolite–Fe system with high Cu sorption capacity. Chemosphere, 2007, 67, 731-740.	8.2	124
31	Removal of Mn2+ ions from drinking water by using Clinoptilolite and a Clinoptilolite–Fe oxide system. Water Research, 2006, 40, 3167-3176.	11.3	142
32	The effect of electrolyte anion on Cu adsorption–desorption by clinoptilolite. Microporous and Mesoporous Materials, 2003, 58, 115-130.	4.4	72
33	Copper Adsorption and Si, Al, Ca, Mg, and Na Release from Clinoptilolite. Journal of Colloid and Interface Science, 2002, 245, 237-250.	9.4	83
34	Preparation, characterization and sorption properties for phosphates of hematite, bentonite and bentonite–hematite systems. Advances in Colloid and Interface Science, 2002, 97, 37-61.	14.7	80
35	APPLICATION OF A FOUR-LAYER MODEL TO DESCRIBE HEMATITE, KAOLINITE AND KAOLINITE-HEMATITE SYSTEM (K-H) SURFACES. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2001, 48, 381-393.	0.2	0
36	Thermodynamics of Copper Adsorption-Desorption by Ca-Kaolinite. Adsorption, 2000, 6, 325-335.	3.0	47

Maria K Doula

#	Article	IF	CITATIONS
37	Thermodynamics of phosphate adsorptionâ€desorption by alfisols, entisols, vertisols, and inceptisols. Communications in Soil Science and Plant Analysis, 1996, 27, 1749-1764.	1.4	4
38	Potassium sorption by caâ€bentonite—commonly used isotherms. Communications in Soil Science and Plant Analysis, 1996, 27, 1107-1123.	1.4	0
39	Thermodynamics of potassium exchange in calcium bentonite (Caâ€b). Communications in Soil Science and Plant Analysis, 1995, 26, 1535-1545.	1.4	16
40	The sorption isotherms of potassium. Communications in Soil Science and Plant Analysis, 1994, 25, 1373-1386.	1.4	7
41	Potassium sorption by calciumâ€bentonite (Caâ€b). Communications in Soil Science and Plant Analysis, 1994, 25, 1387-1400.	1.4	5
42	Phosphate sorption by calciumâ€bentonite as described by commonly used isotherms. Communications in Soil Science and Plant Analysis, 1994, 25, 2299-2312.	1.4	5
43	Kinetics of potassium adsorption by Alfisols of Greece. Communications in Soil Science and Plant Analysis, 1994, 25, 1401-1415.	1.4	3
44	Kinetics of potassium adsorption by Entisols of Greece. Communications in Soil Science and Plant Analysis, 1994, 25, 1417-1430.	1.4	5
45	Kinetics of potassium desorption by Alfisols of Greece. Communications in Soil Science and Plant Analysis, 1994, 25, 1355-1372.	1.4	4
46	Kinetic study of phosphorus desorption by Alfisols and Entisols. Communications in Soil Science and Plant Analysis, 1993, 24, 989-1001.	1.4	4
47	Evaluation of groundwater vulnerability in a Greek island using GIS-based models. , 0, 67, 61-73.		5